会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Memory device and method of making same
    • 存储器件及其制作方法
    • US07902536B2
    • 2011-03-08
    • US11495927
    • 2006-07-28
    • Wolodymyr CzubatyjTyler LowreySergey Kostylev
    • Wolodymyr CzubatyjTyler LowreySergey Kostylev
    • H01L29/02H01L47/00
    • G11C11/5678G11C11/56G11C13/0004H01L45/06H01L45/122H01L45/143H01L45/144H01L45/148
    • A radial memory device includes a phase-change material, a first electrode in electrical communication with the phase-change material, the first electrode having a substantially planar first area of electrical communication with the phase-change material. The radial memory device also includes a second electrode in electrical communication with the phase-change material, the second electrode having a second area of electrical communication with the phase-change material, the second area being laterally spacedly disposed from the first area and substantially circumscribing the first area.Further, a method of making a memory device is disclosed. The steps include depositing a first electrode, depositing a first insulator, configuring the first insulator to define a first opening. The first opening provides for a generally planar first contact of the first electrode. The method further including the steps of depositing a phase-change material, depositing a second insulator, configuring the second insulator, depositing a second electrode having a second contact laterally displaced from said first contact, and configuring said second electrode.
    • 径向存储器件包括相变材料,与相变材料电连通的第一电极,第一电极具有与相变材料电连通的基本平坦的第一区域。 所述径向存储装置还包括与所述相变材料电连通的第二电极,所述第二电极具有与所述相变材料电连通的第二区域,所述第二区域与所述第一区域横向间隔设置并且基本上限定 第一个区域。 此外,公开了一种制造存储器件的方法。 这些步骤包括沉积第一电极,沉积第一绝缘体,构成第一绝缘体以限定第一开口。 第一开口提供第一电极的大致平面的第一接触。 该方法还包括以下步骤:沉积相变材料,沉积第二绝缘体,构成第二绝缘体,沉积具有从所述第一触点横向移位的第二触点的第二电极,以及配置所述第二电极。
    • 6. 发明申请
    • Electrically rewritable non-volatile memory element and method of manufacturing the same
    • 电可重写非易失性存储元件及其制造方法
    • US20070096074A1
    • 2007-05-03
    • US11264129
    • 2005-11-02
    • Isamu AsanoNatsuki SatoTyler LowreyGuy WickerWolodymyr CzubatyjStephen Hudgens
    • Isamu AsanoNatsuki SatoTyler LowreyGuy WickerWolodymyr CzubatyjStephen Hudgens
    • H01L47/00
    • H01L45/06H01L27/2436H01L45/1233H01L45/126H01L45/144H01L45/148
    • A non-volatile memory element includes a first interlayer insulation layer 11 having a first through-hole 11a, a second interlayer insulation layer 12 having a second through-hole 12a formed on the first interlayer insulation layer 11, a bottom electrode 13 provided in the first through-hole 11, recording layer 15 containing phase change material provided in the second through-hole 12, a top electrode 16 provided on the second interlayer insulation layer 12, and a thin-film insulation layer 14 formed between the bottom electrode 13 and the recording layer 15. In accordance with this invention, the diameter D1 of a bottom electrode 13 buried in a first through-hole 11a is smaller than the diameter D2 of a second through-hole 12a, thereby decreasing the thermal capacity of the bottom electrode 13. Therefore, when a pore 14a is formed by dielectric breakdown in a thin-film insulation layer 14 and the vicinity is used as a heating region, the amount of heat escaping to the bottom electrode 13 is decreased, resulting in higher heating efficiency.
    • 非易失性存储元件包括具有第一通孔11a的第一层间绝缘层11,具有形成在第一层间绝缘层11上的第二通孔12a的第二层间绝缘层12, 在第一通孔11中,设置在第二通孔12中的包含相变材料的记录层15,设置在第二层间绝缘层12上的顶部电极16和形成在第二通孔12的底部电极之间的薄膜绝缘层14 13和记录层15。 根据本发明,埋在第一通孔11a中的底部电极13的直径D 1小于第二通孔12a的直径D 2,从而降低底部电极13的热容量 。 因此,当通过薄膜绝缘层14中的电介质击穿形成孔14a并且将其附近用作加热区域时,逸出到底部电极13的热量减少,导致更高的加热效率。
    • 7. 发明授权
    • Multilevel variable resistance memory cell utilizing crystalline programming states
    • 利用晶体编程状态的多电平可变电阻存储单元
    • US08363446B2
    • 2013-01-29
    • US12578638
    • 2009-10-14
    • Wolodymyr CzubatyjTyler LowreyCharles DennisonCarl Schell
    • Wolodymyr CzubatyjTyler LowreyCharles DennisonCarl Schell
    • G11C11/00
    • G11C11/56G11C11/5678G11C13/0004G11C13/0069G11C2013/0092
    • A method of programming an electrical variable resistance memory device. When applied to variable resistance memory devices that incorporate a phase-change material as the active material, the method utilizes a plurality of crystalline programming states. The crystalline programming states are distinguishable on the basis of resistance, where the resistance values of the different states are stable with time and exhibit little or no drift. As a result, the programming scheme is particularly suited to multilevel memory applications. The crystalline programming states may be achieved by stabilizing crystalline phases that adopt different crystallographic structures or by stabilizing crystalline phases that include mixtures of two or more distinct crystallographic structures that vary in the relative proportions of the different crystallographic structures. The programming scheme incorporates at least two crystalline programming states and further includes at least a third programming state that may be a crystalline, amorphous or mixed crystalline-amorphous state.
    • 一种编程电可变电阻存储器件的方法。 当应用于包含相变材料作为活性材料的可变电阻存储器件时,该方法利用多个晶体编程状态。 结晶编程状态可以根据电阻进行区分,其中不同状态的电阻值随时间稳定并且表现出很小的或没有漂移。 因此,编程方案特别适用于多层存储器应用。 晶体编程状态可以通过稳定采用不同晶体结构的结晶相或通过稳定结晶相来实现,所述结晶相包括两种或更多种不同结晶学结构的混合物,其在不同结晶学结构的相对比例中变化。 编程方案包含至少两个晶体编程状态,并且还包括至少第三编程状态,其可以是晶体,无定形或混合晶体 - 非晶状态。
    • 9. 发明申请
    • Chalcogenide Devices Exhibiting Stable Operation from the As-Fabricated State
    • 从制造国展示稳定运行的硫族化物装置
    • US20100321991A1
    • 2010-12-23
    • US12871975
    • 2010-08-31
    • Sergey A. KostylevTyler LowreyGuy WickerWolodymyr Czubatyj
    • Sergey A. KostylevTyler LowreyGuy WickerWolodymyr Czubatyj
    • G11C11/00
    • H01L45/06H01L45/1233H01L45/144H01L45/1625
    • A chalcogenide material and chalcogenide memory device having less stringent requirements for formation, improved thermal stability and/or faster operation. The chalcogenide materials include materials comprising Ge, Sb and Te in which the Ge and/or Te content is lean relative to the commonly used Ge2Sb2Te5 chalcogenide composition. Electrical devices containing the instant chalcogenide materials show a rapid convergence of the set resistance during cycles of setting and resetting the device from its as-fabricated state, thus leading to a reduced or eliminated need to subject the device to post-fabrication electrical formation prior to end-use operation. Improved thermal stability is manifested in terms of prolonged stability of the resistance of the device at elevated temperatures, which leads to an inhibition of thermally induced setting of the reset state in the device. Significant improvements in the 10 year data retention temperature are demonstrated. Faster device operation is achieved through an increased speed of crystallization, which acts to shorten the time required to transform the chalcogenide material from its reset state to its set state in an electrical memory device.
    • 一种硫族化物材料和硫族化物记忆装置,其对形成,改进的热稳定性和/或更快的操作要求不太严格。 硫属化物材料包括Ge,Sb和Te的材料,其中Ge和/或Te含量相对于通常使用的Ge 2 Sb 2 Te 5硫族化物组合物是稀的。 包含瞬时硫族化物材料的电气装置显示设定循环期间的设定电阻的快速收敛以及将器件从其制造状态复位,从而导致减少或消除了将器件置于后制造电形成之前 最终使用操作。 改进的热稳定性表现在器件在升高的温度下的电阻的延长的稳定性,这导致抑制器件中复位状态的热诱导设置。 展示了10年数据保存温度的显着改进。 通过提高结晶速度实现更快的器件操作,其用于缩短将硫族化物材料从其复位状态转换到其在电存储器件中的设定状态所需的时间。