会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 8. 发明申请
    • BIOCOMPATIBLE GRAPHENE QUANTUM DOTS FOR DRUG DELIVERY AND BIOIMAGING APPLICATIONS
    • 用于药物输送和生物利用应用的生物成分量子
    • US20160256403A1
    • 2016-09-08
    • US15033513
    • 2014-11-03
    • COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH
    • Neetu SinghAnil Chandra
    • A61K9/51C25F3/02A61K49/00
    • A61K9/5146A61K49/0067B82Y5/00B82Y15/00B82Y30/00B82Y40/00C01B32/184C25B1/00C25F3/02Y10S977/774Y10S977/788Y10S977/888Y10S977/90Y10S977/906Y10S977/927
    • In this work we have targeted two aspects of GQDs, Size and ROS to reduce their cytotoxicity. Small size can damage cell organelles and production of ROS (reactive oxygen species) can hamper cell machinery in multiple ways. We have shown that cytotoxicity can be significantly reduced by embedding GQDs inside the PEG matrix rather than creating a thin shell around each GQD. Thin PEG shell around GQD can control ROS production but cannot circumvent the toxicity due to small size. Thus it was essential to solve both the issues. We have used a simple electrochemical method (12 h at room temperature) for synthesizing GQDs and embedded them in PEG matrix via a simple one step hydrothermal reaction (24 h at 160° C.) involving only GQDs, PEG, and deionized water. The P-GQDs formed after hydrothermal reaction show nanoparticles of diameter of ˜80-100 nm containing GQDs entrapped in PEG matrix. MTT assay showed significant 60% cells viability at a very high concentration of 5.5 mg/mL of P-GQDs compared to 10-15% viability for C-GQD and H-GQD. ROS production by P-GQDs was least compared to C-GQD and H-GQD in cell free and intracellular ROS assay suggesting involvement of ROS in cytotoxicity. In this work we have solved the issue of cytotoxicity due to ‘small size’ and ‘ROS generation’ without compromising with fluorescence properties of GQDs. P-GQDs was used for bioimaging and drug delivery in HeLa cells. In short we can obtain biocompatible P-GQDs in very short span of time with minimal use of hazardous chemicals and simple methodology.
    • 在这项工作中,我们针对GQD,Size和ROS的两个方面来降低细胞毒性。 小尺寸可以破坏细胞器并产生ROS(活性氧)可以以多种方式阻碍细胞机械。 我们已经表明,通过将GQD嵌入PEG基质内而不是在每个GQD周围创建一个薄壳,可显着降低细胞毒性。 GQD周围的薄PEG壳可以控制ROS生产,但由于体积小,无法规避毒性。 因此,解决这两个问题至关重要。 我们使用简单的电化学方法(室温下12小时)合成GQD,并通过简单的一步水热反应(160℃下24小时)将其包埋在PEG基质中,仅涉及GQD,PEG和去离子水。 在水热反应后形成的P-GQDs显示含有截留在PEG基质中的GQD的直径为〜80-100nm的纳米颗粒。 在非常高浓度的5.5mg / mL P-GQD中,MTT测定显示60%的细胞活力,而C-GQD和H-GQD的生存能力为10-15%。 与无细胞和细胞内ROS测定中的C-GQD和H-GQD相比,P-GQD的ROS产生最少,表明ROS参与细胞毒性。 在这项工作中,我们解决了由于“小尺寸”和“ROS生成”引起的细胞毒性问题,而不影响GQD的荧光特性。 P-GQD用于HeLa细胞中的生物成像和药物递送。 简而言之,我们可以在很短的时间内获得生物相容的P-GQD,最少使用危险化学品和简单的方法。
    • 10. 发明申请
    • NANOMECHANICAL RESONATOR ARRAY AND PRODUCTION METHOD THEREOF
    • NANOMANAN共振器阵列及其生产方法
    • US20160087600A1
    • 2016-03-24
    • US14785535
    • 2013-04-19
    • KOC UNIVERSITESI
    • Burhanettin Erdem AlacaYusuf LeblebiciIsmail YorulmazYasin KilincBekir Aksoy
    • H03H9/24B82B1/00H03B5/30
    • H03H9/2463B82B1/005B82Y15/00B82Y40/00H03B5/30H03H9/2405H03H2009/02291Y10S977/762Y10S977/888Y10S977/956
    • In the present invention, a nanomechanical resonator array (1), which is suitable being used in an oscillator and production method of said nanomechanical resonator array are developed. Said resonator array (1) comprises at least two resonators (2), which are in the size of nanometers, which are vertically arrayed and which are preferably in the form of nano-wire or nano-tube; at least one coupling membrane (3), which mechanically couples said resonators (2) from their one ends, and at least one clamping element (4), which supports mechanical coupling by clamping said coupling membrane (3). Said resonator array (1) can be actuated and its displacements can be sensed. The present invention develops a predictive model of the frequency response of an oscillator comprising the said resonator array (1) for electrostatic actuation and capacitive readout. An oscillator comprised of multiple resonator arrays (1) with different frequency responses connected to a frequency manipulation circuitry can be used as well. For silicon-based systems, said production method comprises the steps of patterning two windows on device silicon layer exposing it to plasma etching using Bosch process; carrying out a further oxidation to form nanowires in an oxide envelop; depositing further sacrificial material. Actuation and readout electrode integration comprises steps of electrode material deposition; self-aligned mask material deposition, chemical mechanical polishing; electrode material etch; releasing nanowires by etching sacrificial material and oxide envelope. For non-silicon-based systems, said production method comprises the steps of structural and sacrificial material deposition; patterning and anisotropic etching of both materials; isotropic etching of sacrificial material.
    • 在本发明中,开发了适用于振荡器的纳米机械谐振器阵列(1)和所述纳米机械谐振器阵列的制造方法。 所述谐振器阵列(1)包括至少两个垂直排列的纳米尺寸的谐振器(2),其优选地是纳米线或纳米管的形式; 至少一个耦合膜(3),其将所述谐振器(2)从其一端机械耦合,以及至少一个夹紧元件(4),其通过夹紧所述耦合膜(3)来支撑机械耦合。 可以致动所述谐振器阵列(1),并且可以感测其位移。 本发明开发了包括用于静电驱动和电容读出的所述谐振器阵列(1)的振荡器的频率响应的预测模型。 也可以使用包括具有连接到频率操纵电路的不同频率响应的多个谐振器阵列(1)的振荡器。 对于基于硅的系统,所述制造方法包括以下步骤:在器件硅层上图案化两个窗口,将其暴露于使用Bosch工艺的等离子体蚀刻; 进行进一步氧化以在氧化物包层中形成纳米线; 沉积更多的牺牲材料。 驱动和读出电极整合包括电极材料沉积的步骤; 自对准掩模材料沉积,化学机械抛光; 电极材料蚀刻; 通过蚀刻牺牲材料和氧化物包层释放纳米线。 对于非硅系统,所述生​​产方法包括结构和牺牲材料沉积步骤; 两种材料的图案化和各向异性蚀刻; 牺牲材料的各向同性蚀刻。