会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 油漆与涂料 / 可剥离涂料 / 电磁波干扰抑制涂料及其用于制备电磁波干扰抑制涂层的方法

电磁波干扰抑制涂料及其用于制备电磁波干扰抑制涂层的方法

阅读:95发布:2021-02-23

IPRDB可以提供电磁波干扰抑制涂料及其用于制备电磁波干扰抑制涂层的方法专利检索,专利查询,专利分析的服务。并且本发明公开了一种电磁波干扰抑制涂料,其包含软磁性粉末、高分子树脂、有机固化剂和有机溶剂;本发明还提供一种电磁波干扰抑制涂层的制备方法,将涂料涂布平铺在连续转动的高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理;将上述成型的涂层从高分子薄膜支撑体上剥离,并将至少一层的成型涂层进行固化处理。本发明制备的电磁波干扰抑制涂层不仅电磁波吸收性强,且具有优异的机械强度、可加工性。,下面是电磁波干扰抑制涂料及其用于制备电磁波干扰抑制涂层的方法专利的具体信息内容。

1.一种电磁波干扰抑制涂料,其特征在于,其包含软磁性粉末、高分子树脂、有机固化剂和有机溶剂,该涂料中各成分与软磁性粉末的重量比依次为1∶0.096~0.268∶0.010~

0.057∶0.582~2.195。

2.根据权利要求1所述的电磁波干扰抑制涂料,其特征在于:所述软磁性粉末包括Fe-Si-Al合金、Fe-Cr-Al-Si合金、Fe-Ni合金、Fe-Cu-Si合金、Fe-Si合金、Fe-Si-B-Cu-Nb合金、Fe-Si-Cr-Ni合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金、铁素体中的至少一种。

3.根据权利要求1所述的电磁波干扰抑制涂料,其特征在于:所述高分子树脂包括聚氨酯、环氧树脂、丙烯酸类橡胶、线性酚醛树脂、邻甲酚酚醛树脂、聚乙烯树脂、聚氯乙烯树脂、聚乙烯醇缩丁醛树脂、纤维素树脂、ABS树脂、苯乙烯-丁二烯橡肢、苯酚树脂、酰胺树脂及它们的共聚物中的至少一种。

4.根据权利要求1所述的电磁波干扰抑制涂料,其特征在于:所述有机固化剂包括1,3-双(叔丁过氧异丙基)苯、N,N′-间亚苯基双马来酰亚胺、三烯丙基异氰脲酸酯、异氰酸酯化合物、过氧化二异丙苯、二酰基过氧化物、叔烷基过氧酸酯、烷基氢过氧化物、二烷基过氧化物、二烷基过氧缩酮中的至少一种。

5.根据权利要求1所述的电磁波干扰抑制涂料,其特征在于:所述有机溶剂包括环己酮、四氢呋喃、丙酮、甲基乙基酮、甲基异丁基酮、甲苯、二甲苯、苯、乙酸乙酯、乙酸正丁酯、二氧六环中的至少一种。

6.根据权利要求1所述的电磁波干扰抑制涂料,其特征在于:所述高分子树脂用有机溶剂溶解配置成固含量为30%的溶液以储存和备用。

7.一种电磁波干扰抑制涂层的制备方法,其特征在于,依次包括以下步骤:

(1)将权利要求1-6任一所述电磁波干扰抑制涂料涂布平铺在连续转动的高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理,随后在85-155℃干燥处理,成型的涂层厚度为0.06mm-0.2mm;

(2)后处理:将上述成型的涂层从高分子薄膜支撑体上剥离,并将至少一层的成型涂层进行固化处理,固化温度范围在170-220℃,固化压力范围在2-8MPa,得到电磁波干扰抑制涂层。

8.根据权利要求7所述的电磁波干扰抑制涂层的制备方法,其特征在于:步骤1中所述干燥处理为梯度分段升温过程所述涂布的速度范围在2-8m/min。

9.根据权利要求7所述的电磁波干扰抑制涂层的制备方法,其特征在于:步骤2所述固化处理的速度范围在0.3-2.5m/min。

10.一种采用权利要求7~9任一项所述的方法制备的电磁波干扰抑制涂层。

说明书全文

电磁波干扰抑制涂料及其用于制备电磁波干扰抑制涂层的

方法

技术领域

[0001] 本发明涉及电子元器件材料技术领域,特别是涉及一种电磁波干扰抑制涂料和一种能有效地抑制高频电子电路/装置中电磁干扰问题的高磁导率电磁波干扰抑制涂层的制备方法。

背景技术

[0002] 随着手机、个人电脑以及平板电脑等电子设备的普及,电磁波的相互干涉、干扰、误操作或是盗窃信息已成为技术难题和社会问题。目前,作为这种电磁波干扰的抑制对策,一般采用高磁导率的软磁性材料的作为电磁波吸收体。软磁性材料吸收电磁波后,通过自旋反转或者磁壁移动可以将电磁波能量转换为热量,从而降低透射或反射的电磁波强度。
[0003] 电磁波干扰抑制涂层的制备通常是通过混炼压延法进行的。该方法中,将扁平软磁性粉末与橡胶和氯化聚乙烯等粘合剂按规定比例用捏合机混炼,将所得混炼物在压辊等装置中压延成规定厚度,再根据需要使粘合剂加热交联,由此获得单层的电磁波干扰抑制涂层。该方法具有可以高密度填充软磁性粉末、可以通过压延使软磁性粉末在面内方向取向、片的厚度容易调节的优点。但是,混炼压延法中,混炼时软磁性粉末产生应变,同时软磁性粉末很难高密度地填充电磁波干扰抑制涂层,因此软磁性粉末本身的磁性降低,造成无法增大电磁波干扰抑制涂层的磁导率的问题。另外,在高温或高温高湿环境下片的厚度朝着增厚的方向变化,有磁导率降低的问题。并且,随着电子设备的小型、薄型化,需要更轻薄、同时电磁波吸收性能优的电磁波干扰抑制涂层。

发明内容

[0004] 本发明主要解决的技术问题是提供一种制备高磁导率电磁波干扰抑制涂层的方法,其制备的电磁波干扰抑制涂层不仅电磁波吸收性强,且具有优异的机械强度、可加工性、轻薄、柔软以及形状保持性。
[0005] 为解决上述技术问题,本发明提供一种电磁波干扰抑制涂料,其包含软磁性粉末、高分子树脂、有机固化剂和有机溶剂,该涂料中各成分与软磁性粉末的重量比依次为1∶0.096~0.268∶0.010~0.057∶0.582~2.195。
[0006] 本发明的软磁性粉末包括Fe-Si-Al合金、Fe-Cr-Al-Si合金、Fe-Ni合金、Fe-Gu-Si合金、Fe-Si合金、Fe-Si-B(-Gu-Nb)合金、Fe-Si-Cr-Ni合金、Fe-Si-Cr合金、Fe-Si-Al-Ni-Cr合金、铁素体中的至少一种。优选的方案是Fe-Si-A1合金粉末作为软磁性粉末。Fe-Si-Al合金粉末优选平均粒径为0.5-100μm、平均厚度0.1-3.0μm,更优选平均粒径为10-100μm、平均厚度0.5-2.5μm。为了使电磁波干扰抑制涂层的磁导率增大,增大软磁性粉末的颗粒尺寸、减小颗粒之间的间隔、并且提高软磁性粉末的长宽比而减小软磁性粉末中去磁的影响是有效的。
[0007] 本发明的高分子树脂包括聚氨酯、环氧树脂、丙烯酸类橡胶、线性酚醛树脂、邻甲酚酚醛树脂、聚乙烯树脂、聚氯乙烯树脂、聚乙烯醇缩丁醛树脂、纤维素树脂、ABS树脂、苯乙烯-丁二烯橡肢、苯酚树脂、酰胺树脂中至少一种及它们的共聚物。优选的方案是热塑性聚氨酯作为高分子树脂。高分子树脂起到粘合软磁性粉末的作用。
[0008] 本发明的有机固化剂包括1,3-双(叔丁过氧异丙基)苯、N,N′-间亚苯基双马来酰亚胺、三烯丙基异氰脲酸酯、异氰酸酯化合物、过氧化二异丙苯、二酰基过氧化物、叔烷基过氧酸酯、烷基氢过氧化物、二烷基过氧化物、二烷基过氧缩酮中的至少一种。优选的方案是1,3-双(叔丁过氧异丙基)苯和N,N′-间亚苯基双马来酰亚胺作为高分子树脂。有机固化剂在加热和压力成型处理时,与高分子树脂发生交叉偶联反应,并且在电磁波干扰抑制涂层的表面附近为主体而固化,防止软磁性粉末及高分子树脂从电磁波干扰抑制涂层脱落。高分子树脂成分不足,会导致涂布面上产生厚度不均,热加工性变差,涂布时产生条纹。另外,相对于有机固化剂的量,如果高分子树脂的量相对较多,则电磁波干扰抑制涂层变软;如果有机固化剂的量相对增多,则电磁波干扰抑制涂层变硬。因此,在涂料中,高分子树脂含量在相对于软磁性粉末9.6%~26.8%的重量比范围内,有机固化剂含量在相对于软磁性粉末1%~5.7%的重量比范围内,相对较多地使用有机固化剂,则可得到高可靠性的电磁波干扰抑制涂层。
[0009] 本发明的有机溶剂包括环己酮、四氢呋喃、丙酮、甲基乙基酮、甲基异丁基酮、甲苯、二甲苯、苯、乙酸乙酯、乙酸正丁酯、二氧六环中的至少一种。优选的方案是环己酮和/或甲苯作为有机溶剂。
[0010] 本发明的高分子树脂用有机溶剂溶解配置成固含量为30%的溶液以储存和备用。优选的方案,热塑性聚氨酯作为高分子树脂,用环己酮作为有机溶剂,溶解热塑性聚氨酯配置成固含量为30%的溶液以储存和备用。
[0011] 本发明还提供一种电磁波干扰抑制涂层的制备方法,依次包括以下步骤:
[0012] (1)将上述任一所述电磁波干扰抑制涂料涂布平铺在连续转动的高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理,随后在85-155℃干燥处理,成型的涂层厚度为0.06mm-0.2mm;
[0013] (2)后处理:将上述成型的涂层从高分子薄膜支撑体上剥离,并将至少一层的成型涂层进行固化处理,固化温度范围在170-220℃,固化压力范围在2-8MPa,得到电磁波干扰抑制涂层。
[0014] 本发明涂布制备电磁波干扰抑制涂层的方法步骤1中,用于在高分子薄膜支撑体上形成电磁波干扰抑制涂层的涂布方法也没有特别限定,可以采用现有的方法,例如,空气刮刀涂布、刮刀涂布、线棒涂布、气刀涂布、挤压涂布、浸润涂布、逆辊涂布、转移辊涂布、凹版涂布、吻合涂布、流延涂布、挤出涂布、狭缝涂布、旋涂等。通过使用这些方式的涂布装置,可以在高分子薄膜支撑体的单面或双面涂布。优选的高分子膜支撑体也可以是聚对苯二甲酸乙二醇酯(PET)、聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、聚丙烯(PP)、聚酰胺、聚醚、聚醚砜等其他高分子薄膜。
[0015] 本发明涂布制备电磁波干扰抑制涂层的方法步骤1中,对涂层进行旋转磁场取向处理。在涂布过程中,由于形状各向异性的影响软磁性粉末的磁矩倾向于在片内排布,因此对混乱分布的软磁性粉末施加一个外加磁场后,由于磁化方向偏离易磁化面,将产生一个转矩作用于软磁性粉末上,使其易磁化面倾向于沿磁场方向排布。由于此时高分子树脂粘接剂呈液态或是胶状,软磁性粉末转动时的摩擦力就会大大减少。这样的取向过程持续1分钟以上后,软磁性粉末的运动便可达到某种平衡,同时高分子树脂也逐渐固化,将软磁性粉末保持在特定取向的位置上。具有特定取向的软磁性粉使得电磁波干扰抑制涂层在特定取向上对电磁波的吸收系数很高,有利于其广泛应用于产生特定取向电磁干扰的电子设备。
[0016] 本发明涂布制备电磁波干扰抑制涂层的方法步骤1中,干燥处理为梯度分段升温过程。梯度分段升温处理避免了涂层过快升温导致溶剂挥发过快造成涂层出现气泡和裂痕。
[0017] 本发明涂布制备电磁波干扰抑制涂层的方法步骤1中,涂布的速度范围在2-8m/min。在2-8m/min涂布的速度范围内进行涂布处理,可以得到连续、厚度均匀,软磁性粉末填充度高的电磁波干扰抑制涂层,从而其具有更高的磁导率。
[0018] 本发明涂布制备电磁波干扰抑制涂层的方法步骤2中,固化处理的速度范围在0.3-2.5m/min。在0.3-2.5m/min固化的速度范围内进行固化处理,有利于得到固化程度高、厚度均匀、韧性高、且软磁性粉末填充度高的电磁波干扰抑制涂层,从而其具有更高的磁导率。
[0019] 本发明的电磁波干扰抑制涂层拉伸强度过小,则压缩不足,软磁性粉末不能紧密地填塞,可能造成涂层内部混入空气,厚度变化增大;相反,拉伸强度过大,则涂层过度压缩,涂层柔软性降低,因此优选20MPa以上、50MPa以下,更优选25MPa以上、45MPa以下。拉伸强度在该范围内,则具有适度的柔软性,同时片本身有硬度,优异的操作性和可加工性,将电磁波干扰抑制涂层组装到电子设备等中时的成品率不降低。将涂层的拉伸强度设定在该优选范围的方法可通过调节固化压力、固化处理速度或软磁性粉末的用量来进行。
[0020] 本发明的有益效果是:本发明结合涂布法的优势,提供一种电磁波干扰抑制涂料并提供相应的涂布制备高磁导率电磁波干扰抑制涂层的方法,其制备的电磁波干扰抑制涂层不仅电磁波吸收性强,且具有优异的机械强度、可加工性、轻薄、柔软以及形状保持性。

具体实施方式

[0021] 下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
[0022] 实施例1
[0023] 将98重量份高分子树脂聚氨酯(Sigma-Aldrich制备,平均分子量40万)用有机溶剂170重量份甲苯和130重量份环己酮溶解配置成胶水,并将500重量份Fe-Si-Al合金软磁性粉末(比表面积0.23m2/g,各向异性磁场135Oe,共振频率fr″:2000MHz)分散在胶水中,随后加入200重量份环己酮和10重量份有机固化剂1,3-双(叔丁过氧异丙基)苯,制成均匀的涂料。
[0024] 将涂料温度调至25℃,以2m/min的涂布速度将其涂布平铺在连续转动的PET高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理,随后在85-155℃干燥处理,涂层经过90℃、110℃、130℃三级烘箱进行烘干,再经过135℃、140℃、145℃第四级、第五级、第六级的烘箱,最后经过第七级150℃的烘箱干燥,得到干燥后成型的涂层厚度为0.1mm左右。
[0025] 将上述成型的涂层从PET高分子薄膜支撑体上剥离。准备4片剥离的涂层将它们层合,将该层合物的两面用可剥离得PET夹持,进一步在该两面配置100μm厚的纸质材料作为缓冲材料,将两侧用两片不锈钢板夹持,用鼓式硫化机以3Mpa的压力在175℃下以2m/min的固化速度进行固化,得到电磁波干扰抑制涂层。
[0026] 对所得电磁波干扰抑制涂层实施耐热试验(在温度80℃、湿度60Rh%的烘箱中静置72小时),耐热试验后电磁波干扰抑制涂层的厚度向变薄方向变化,但是以耐热试验前的电磁波干扰抑制涂层为基准,其变化率低于1%。有效磁导率μ′值为50以上,且磁损耗μ″低于2。有效磁导率μ′是使用阻抗分析仪(Agilent Technology提供)测定载频(13.4MHz)下的电感和电阻值,并计算磁导率。
[0027] 使用光泽仪测定所得电磁波干扰抑制涂层在入射角60°(-60°)下的光泽度为31%。光泽度优选范围为20-50%。
[0028] 使用拉伸测试器测定0.25mm厚、50mm宽、100mm长的样品的拉伸强度为32MPa。拉伸强度优选范围为20-50MPa。
[0029] 使用磨损测试仪在50N/m2压力下磨损电磁波干扰抑制涂层样品30mins,磨损量小于5%,并且未观察所得涂层有粉末脱落,触碰涂层时软磁性粉末未发生脱落。
[0030] 制备的电磁波干扰抑制涂层的磁导率、光泽度、拉伸强度、电阻、柔软性、形状保持性均显示良好的结果。
[0031] 实施例2
[0032] 将88重量份高分子树脂聚氨酯(Sigma-Aldrich制备,平均分子量40万)用有机溶剂100重量份甲苯和170重量份环己酮溶解配置成胶水,并将500重量份Fe-Si-Al合金软磁性粉末(比表面积0.27m2/g,各向异性磁场115Oe,共振频率fr″:2000MHz)分散在胶水中,随后加入500重量份环己酮、4重量份有机固化剂1,3-双(叔丁过氧异丙基)苯和4重量份N,N′-间亚苯基双马来酰亚胺,制成均匀的涂料。
[0033] 将涂料温度调至25℃,以2m/min的涂布速度将其涂布平铺在连续转动的PET高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理,随后在85-155℃干燥处理,涂层经过90℃、110℃、130℃三级烘箱进行烘干,再经过135℃、140℃、145℃第四级、第五级、第六级的烘箱,最后经过第七级150℃的烘箱干燥,得到干燥后成型的涂层厚度为0.1mm左右。
[0034] 将上述成型的涂层从PET高分子薄膜支撑体上剥离。准备2片剥离的涂层将它们层合,将该层合物的两面用可剥离得PET夹持,进一步在该两面配置100μm厚的纸质材料作为缓冲材料,将两侧用两片不锈钢板夹持,用鼓式硫化机以4Mpa的压力在175℃下以2m/min的固化速度进行固化,得到电磁波干扰抑制涂层。
[0035] 对所得电磁波干扰抑制涂层实施耐热试验(在温度80℃、湿度60Rh%的烘箱中静置72小时),耐热试验后电磁波干扰抑制涂层的厚度向变薄方向变化,但是以耐热试验前的电磁波干扰抑制涂层为基准,其变化率低于1%。有效磁导率μ′值为60以上,且磁损耗μ″低于3。有效磁导率μ′是使用阻抗分析仪(Agilent Technology提供)测定载频(13.4MHz)下的电感和电阻值,并计算磁导率。
[0036] 使用光泽仪测定所得电磁波干扰抑制涂层在入射角60°(-60°)下的光泽度为29%。光泽度优选范围为20-50%。
[0037] 使用拉伸测试器测定0.16mm厚、50mm宽、100mm长的样品的拉伸强度为28MPa。拉伸强度优选范围为20-50MPa。
[0038] 使用磨损测试仪在50N/m2压力下磨损电磁波干扰抑制涂层样品30mins,磨损量小于5%,并且未观察所得涂层有粉末脱落,触碰涂层时软磁性粉末未发生脱落。
[0039] 制备的电磁波干扰抑制涂层的磁导率、光泽度、拉伸强度、电阻、柔软性、形状保持性相对于实施例1均显示更加良好的结果。
[0040] 实施例3
[0041] 将80重量份高分子树脂聚氨酯(Sigma-Aldrich制备,平均分子量40万)用有机溶剂200重量份环己酮溶解配置成胶水,并将500重量份Fe-Si-A1合金软磁性粉末(比表面积0.23m2/g,各向异性磁场115Oe,共振频率fr″:2000MHz)分散在胶水中,随后加入570重量份环己酮、4重量份有机固化剂1,3-双(叔丁过氧异丙基)苯和4重量份N,N′-间亚苯基双马来酰亚胺,制成均匀的涂料。
[0042] 将涂料温度调至25℃,以2m/min的涂布速度将其涂布平铺在连续转动的PET高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理,随后在85-155℃干燥处理,涂层经过90℃、110℃、130℃三级烘箱进行烘干,再经过135℃、140℃、145℃第四级、第五级、第六级的烘箱,最后经过第七级150℃的烘箱干燥,得到干燥后成型的涂层厚度为0.1mm左右。
[0043] 将上述成型的涂层从PET高分子薄膜支撑体上剥离。准备2片剥离的涂层将它们层合,将该层合物的两面用可剥离得PET夹持,进一步在该两面配置100μm厚的纸质材料作为缓冲材料,将两侧用两片不锈钢板夹持,用鼓式硫化机以4Mpa的压力在175℃下以2m/min的固化速度进行固化,得到电磁波干扰抑制涂层。
[0044] 对所得电磁波干扰抑制涂层实施耐热试验(在温度80℃、湿度60Rh%的烘箱中静置72小时),耐热试验后电磁波干扰抑制涂层的厚度向变薄方向变化,但是以耐热试验前的电磁波干扰抑制涂层为基准,其变化率低于1%。有效磁导率μ′值为60以上,且磁损耗μ″低于1.5。有效磁导率μ′是使用阻抗分析仪(Agilent Technology提供)测定载频(13.4MHz)下的电感和电阻值,并计算磁导率。
[0045] 使用光泽仪测定所得电磁波干扰抑制涂层在入射角60°(-60°)下的光泽度为32%。光泽度优选范围为20-50%。
[0046] 使用拉伸测试器测定0.16mm厚、50mm宽、100mm长的样品的拉伸强度为28MPa。拉伸强度优选范围为20-50MPa。
[0047] 使用磨损测试仪在50N/m2压力下磨损电磁波干扰抑制涂层样品30mins,磨损量小于5%,并且未观察所得涂层有粉末脱落,触碰涂层时软磁性粉末未发生脱落。
[0048] 制备的电磁波干扰抑制涂层的磁导率、光泽度、拉伸强度、电阻、柔软性、形状保持性均显示良好的结果。
[0049] 实施例4
[0050] 将100重量份高分子树脂聚氨酯(Sigma-Aldrich制备,平均分子量40万)用有机溶剂270重量份环己酮溶解配置成胶水,并将500重量份Fe-Si-Al合金软磁性粉末(比表面积2
0.23m/g,各向异性磁场115Oe,共振频率fr″:2000MHz)分散在胶水中,随后加入500重量份环己酮、6重量份有机固化剂1,3-双(叔丁过氧异丙基)苯和6重量份N,N′-间亚苯基双马来酰亚胺,制成均匀的涂料。
[0051] 将涂料温度调至25℃,以2m/min的涂布速度将其涂布平铺在连续转动的PET高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理,随后在85-155℃干燥处理,涂层经过90℃、110℃、130℃三级烘箱进行烘干,再经过135℃、140℃、145℃第四级、第五级、第六级的烘箱,最后经过第七级150℃的烘箱干燥,得到干燥后成型的涂层厚度为0.1mm左右。
[0052] 将上述成型的涂层从PET高分子薄膜支撑体上剥离。准备1片剥离的涂层,将涂层的两面用可剥离得PET夹持,进一步在该两面配置100μm厚的纸质材料作为缓冲材料,将两侧用两片不锈钢板夹持,用鼓式硫化机以4Mpa的压力在175℃下以2m/min的固化速度进行固化,得到电磁波干扰抑制涂层。
[0053] 对所得电磁波干扰抑制涂层实施耐热试验(在温度80℃、湿度60Rh%的烘箱中静置72小时),耐热试验后电磁波干扰抑制涂层的厚度向变薄方向变化,但是以耐热试验前的电磁波干扰抑制涂层为基准,其变化率低于1%。有效磁导率μ′值为60以上,且磁损耗μ″低于1.5。有效磁导率μ′是使用阻抗分析仪(Agilent Technology提供)测定载频(13.4MHz)下的电感和电阻值,并计算磁导率。
[0054] 使用光泽仪测定所得电磁波干扰抑制涂层在入射角60°(-60°)下的光泽度为32%。光泽度优选范围为20-50%。
[0055] 使用拉伸测试器测定0.08mm厚、50mm宽、100mm长的样品的拉伸强度为22MPa。拉伸强度优选范围为20-50MPa。
[0056] 使用磨损测试仪在50N/m2压力下磨损电磁波干扰抑制涂层样品30mins,磨损量小于5%,并且未观察所得涂层有粉末脱落,触碰涂层时软磁性粉末未发生脱落。
[0057] 制备的电磁波干扰抑制涂层的磁导率、光泽度、拉伸强度、电阻、柔软性、形状保持性均显示良好的结果。
[0058] 实施例5
[0059] 将100重量份高分子树脂聚氨酯(Sigma-Aldrich制备,平均分子量40万)用有机溶剂270重量份环己酮溶解配置成胶水,并将500重量份Fe-Si-Al合金软磁性粉末(比表面积0.23m2/g,各向异性磁场11 5Oe,共振频率fr″:2000MHz)分散在胶水中,随后加入500重量份环己酮、5重量份有机固化剂1,3-双(叔丁过氧异丙基)苯和5重量份N,N′-间亚苯基双马来酰亚胺,制成均匀的涂料。
[0060] 将涂料温度调至25℃,以2m/min的涂布速度将其涂布平铺在连续转动的PET高分子薄膜支撑体上形成涂层,并同时对涂层进行旋转磁场取向处理,随后在85-155℃干燥处理,涂层经过90℃、110℃、130℃三级烘箱进行烘干,再经过135℃、140℃、145℃第四级、第五级、第六级的烘箱,最后经过第七级150℃的烘箱干燥,得到干燥后成型的涂层厚度为0.1mm左右。
[0061] 将上述成型的涂层从PET高分子薄膜支撑体上剥离。准备1片剥离的涂层,将涂层的两面用可剥离得PET夹持,进一步在该两面配置100μm厚的纸质材料作为缓冲材料,将两侧用两片不锈钢板夹持,用鼓式硫化机以3Mpa的压力在175℃下以2m/min的固化速度进行固化,得到电磁波干扰抑制涂层。
[0062] 对所得电磁波干扰抑制涂层实施耐热试验(在温度80℃、湿度60Rh%的烘箱中静置72小时),耐热试验后电磁波干扰抑制涂层的厚度向变薄方向变化,但是以耐热试验前的电磁波干扰抑制涂层为基准,其变化率低于1%。有效磁导率μ′值为60以上,且磁损耗μ″低于1.5。有效磁导率μ′是使用阻抗分析仪(Agilent Technology提供)测定载频(13.4MHz)下的电感和电阻值,并计算磁导率。
[0063] 使用光泽仪测定所得电磁波干扰抑制涂层在入射角60°(-60°)下的光泽度为35%。光泽度优选范围为20-50%。
[0064] 使用拉伸测试器测定0.08mm厚、50mm宽、100mm长的样品的拉伸强度为22MPa。拉伸强度优选范围为20-50MPa。
[0065] 使用磨损测试仪在50N/m2压力下磨损电磁波干扰抑制涂层样品30mins,磨损量小于5%,并且未观察所得涂层有粉末脱落,触碰涂层时软磁性粉末未发生脱落。
[0066] 制备的电磁波干扰抑制涂层的磁导率、光泽度、拉伸强度、电阻、柔软性、形状保持性均显示良好的结果。
[0067] 虽然在上文中已经参考一些实施例对本发明进行了描述,然而在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,本发明所披露的各个实施例中的各项特征均可通过任意方式相互结合起来使用,在本说明书中未对这些组合的情况进行穷举性的描述是出于省略篇幅和节约资源的考虑。因此,本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用