会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
首页 / 专利库 / 化学元素和化合物 / 富勒烯 / 在复合金属基体中作为固体润滑剂的空心类富勒烯纳米粒子

在复合金属基体中作为固体润滑剂的空心类富勒烯纳米粒子

阅读:558发布:2021-02-27

IPRDB可以提供在复合金属基体中作为固体润滑剂的空心类富勒烯纳米粒子专利检索,专利查询,专利分析的服务。并且本发明提供一种新型复合材料,该复合材料包含由金属、金属合金或者半导体材料制成的多孔基体以及一种金属硫族化合物或者这类化合物的混合物的空心类富勒烯纳米粒子。所述复合材料的特征在于其孔隙率为约10-40%。所述复合材料中空心纳米粒子的量为1-20重量%。,下面是在复合金属基体中作为固体润滑剂的空心类富勒烯纳米粒子专利的具体信息内容。

1.一种包含由金属、金属合金或者半导体材料制成的多孔基体以及 一种金属硫族化合物或者金属硫族化合物的混合物的空心类富勒烯纳米 粒子的复合材料,所述复合材料的孔隙率为10-40%。

2.根据权利要求1的复合材料,其中,所述空心类富勒烯纳米粒子浸 渍入所述多孔基体的孔隙中。

3.根据权利要求1的复合材料,其中,所述空心类富勒烯纳米粒子由 WS2,MoS2或者它们的混合物制备而成。

4.根据权利要求3的复合材料,其中,所述空心类富勒烯纳米粒子的 直径为10-200nm。

5.根据权利要求1的复合材料,其中,在所述基体中空心类富勒烯纳 米粒子的量为1-20重量%。

6.根据权利要求1的复合材料,其中,所述空心类富勒烯纳米粒子与 一种有机载体流体或者有机载体流体的混合物进行混合。

7.根据权利要求1的复合材料,其中,所述空心类富勒烯纳米粒子与 作为有机载体流体的一种油或者多种油的混合物进行混合。

8.根据权利要求1的复合材料,其中,所述多孔基体选自于铜,和铜 基合金,铁,和铁基合金,钛和钛基合金,镍基合金,硅,以及铝。

9.根据权利要求8的复合材料,其中,所述多孔基体是一种在含HF 的溶液中阳极化处理的掺杂硅基体。

10.根据权利要求8的复合材料,其中,所述多孔基体是一种在酸溶 液中阳极化处理的铝箔。

11.根据前述权利要求1-10中之任何一项的复合材料的用途,用于降 低由这种复合材料加工而成的部件的摩擦系数和磨损率以及提高其承载 能力。

12.降低选自于金属、金属合金或半导体材料的承载多孔基体的摩擦 系数和磨损率以及提高其承载能力的方法,所述方法包括:提供将制备 部件的基体并且向所述基体中添加1-20重量%的金属硫族化合物空心类 富勒烯纳米粒子。

13.制备根据权利要求1的复合材料的方法,所述方法包括下述步骤:i.通过将所要求基体的前驱物材料与起泡剂混合并且进行压实,制备 出多孔基体;

ii.在500℃的温度下使起泡剂挥发,并且在700-2000℃的温度下对所 获得的基体进行烧结;

iii.在真空中,将所述基体加热至20-150℃的温度;以及

iv.在真空中,将在前述步骤iii中获得的基体暴露在处于有机载体流 体中的金属硫族化合物或者金属硫族化合物的混合物的空心类富勒烯纳 米粒子的源材料,以获得包含浸渍有金属硫族化合物或者金属硫族化合 物的混合物的空心类富勒烯纳米粒子的所述多孔基体的复合材料。

14.根据权利要求13的方法,其中,对在步骤iv中获得的浸渍后的 多孔基体进行干燥,以便当不需要所述有机载体流体时,将其去除。

15.根据权利要求13的方法,其中,在基体孔隙中的空心类富勒烯纳 米粒子的量为1-20重量%。

16.根据权利要求13的方法,其中,通过与5-30重量%的有机载体 流体或者有机载体流体的混合物混合,在步骤iv中将所述空心类富勒烯 纳米粒子添加至所述多孔基体中。

17.根据权利要求13的方法,其中,通过与5-30重量%的载体油或 者油的混合物混合,在步骤iv中将所述空心类富勒烯纳米粒子添加至所 述多孔基体中。

18.根据权利要求13的方法,其中,通过与熔化的石蜡混合,在步骤 iv中将所述空心类富勒烯纳米粒子添加至所述多孔基体中。

说明书全文

发明领域

本发明涉及用于金属、金属合金和半导体材料的固体润滑剂。本发 明在例如汽车运输,航空工业,空间技术或者超高真空等领域特别有用。

发明背景

继碳富勒烯和碳纳米管(参见Iijima S的文章;Helical microtubules of graphitic Carbon,Nature 354,56-58(1991);Kroto HW 等的文章:C60;Buckminsterfullerene,Nature 318,162-163(1985))之 后,之后,近年来作为单一相已合成了金属二硫族化合物、硼碳化物以 及其它层状化合物的空心纳米粒子和纳米管(参见Chopra NG等的文章: Boron nitride nanotubes,Science,269,966-967(1995);Feldman Y.等 的文章:High-rate,gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes,Science,267,222-225(1995);Rothschild A 等的文章:The growth of WS2 nanotubes phases,J.Am.Chem.Soc,122, 5169-5179(2000);Tenne R等的文章:Polyhedral and Cylindrical Structures of WS2,Nature 360:444-445(1992))。这些材料均属于无机 类富勒烯材料(IF)的通称。
固体润滑剂如石墨和金属二硫族化合物MX2(其中,M是钼或钨,X 是硫或硒)的摩擦学性能在无法使用液体润滑剂的场合,例如空间技术, 超高真空或汽车运输领域具有减少磨损的技术意义。这些材料的特征在 于它们层状结构之间的原子间相互作用(范德瓦力)弱,能够容易发生 低强度剪切。
固体润滑剂要求具有某些性能,例如表面能低,化学稳定性高、分 子间结合弱、转移膜形成能力良好以及承载能力高。传统的固体润滑剂 如MoS2粒子、石墨和聚四氟乙烯(PTFE)具有弱的层间结合力,能够使 所述材料转移到配副表面上,这种转移膜是产生低摩擦磨损的部分原因。
金属二硫族化合物以及MoS2粒子在各种场合作为固体润滑剂使用已 有许多文献证明(参见Singer IL著:Fundamentals of Friction:Macroscopic and Microscopic Processes(第二版)(主编: Singer IL和PollocK HM),第237页(出版机构:Kluwer,Dordrecht,1992 年))最近,WS2空心纳米粒子作为润滑液添加剂的摩擦学应用也已得到 证实(参见Rapoport L等的文章:Hollow nanoparticles of WS2 as potential solid-state lubricants,Nature,387,791-793(1997))。
发明简述
本发明的目的是开发具有高的耐久性和机械强度的金属、金属合金 或者半导体材料的新型复合材料。
上述目的被本发明实现。本发明提供用于降低摩擦系数和磨损率并 且提高由所述材料制成的部件的承载能力的新型复合材料。本发明的新 型复合材料包括金属、金属合金或半导体材料制成的多孔基体以及金属 硫族化合物或者这种化合物的混合物的空心类富勒烯(fullerene-like) 纳米粒子(IF),所述复合材料的孔隙率为约10-40%。
本发明也提供一种制备本发明的新型复合材料的方法。
用于本发明的复合材料的IF纳米粒子的直径为约10-200nm。由于尺 寸小,这些纳米粒子能够渗透进入高度致密的基体中。
不受理论束缚,可以假定IF纳米粒子渗透到多孔基体的孔隙内并且 缓慢地释放到表面,从而起到润滑剂和垫片(spacer)的双重作用。下 文中将IF纳米粒子的这种特性与市售的具有2H多型结构(2H)的MoS2和WS2片晶进行了比较。
附图简述
为了了解本发明,弄清其可能的实际实施过程,下面仅仅通过非限 制性实施例,并且参照附图,对一个优选实施方案进行介绍。所述附图 中:
图1A和1B分别是含有2H-WS2片晶的烧结青铜-石墨块体的SEM照片 和含有IF-WS2纳米粒子的烧结青铜-石墨块体的SEM照片;
图2是摩擦系数和温度与作用于青铜-石墨、采用2H-WS2和IF-WS2纳米粒子浸渍的青铜-石墨上的载荷之间的关系曲线。
图3是4个青铜-石墨样品(原始状态;采用油浸渍;采用带有2H-WS2的油浸渍;采用带有IF-WS2纳米粒子的油浸渍)在载荷30kg,滑动速度 为1m/s的条件下摩擦之后的表面粗糙情形。
图4是采用油浸渍和采用油+IF-WS2(3.2重量%)纳米粒子浸渍的青 铜-石墨复合体的摩擦系数与PV参量的关系曲线。
图5是采用油+IF浸渍的粉末状青铜-石墨块体在PV=5200条件下试 验后的表面SEM照片;
图6是在将油烘干后,浸渍有2H-WS2(6.5重量%)和IF-WS2(6.5 重量%和8.4重量%)的铁-镍-石墨块体的摩擦系数与载荷之间的关系曲 线。
图7是在油烘干之后,浸渍有2H-WS2(5重量%)和IF-WS2(4.5重 量%)的铁-石墨块体摩擦系数与载荷之间的关系曲线。
优选实施方案详述
本发明提供一种包括由金属、金属合金或半导体材料制成的多孔基 体以及金属硫族化合物或这类化合物的混合物的空心类富勒烯纳米粒子 的新型复合材料。所述复合材料的特征在于其孔隙率为约10-40%,复合 材料中空心纳米粒子的量为1-20重量%。
可以假设:基体的孔隙起IF纳米粒子蓄集室的作用,IF纳米粒子被 缓慢提供到金属表面,与2H粒子相比,产生更低的摩擦,更低的磨损率 以及更高的临界胶合(seizure)载荷;IF纳米粒子的上述主要有利贡献 很可能归因于下述三方面作用:a;滚动摩擦;b空心纳米粒子起垫片作 用,从而避免金属间直接接触;c三体材料转移,即,纳米粒子层不时地 由所述纳米粒子转移到金属表面上并且使配合(mating)金属表面间的 滑动摩擦减小。
空心类富勒烯纳米粒子优选采用WS2,MoS2或者它们的混合物制成。 可以根据需要将所述纳米粒子制备成各种小尺寸并且使其拥有非反应性 表面,这样,纳米粒子可以很容易浸渍到基体内。由于合成的IF纳米粒 子的尺寸范围可以为10-200nm,因此,孔隙与纳米粒子尺寸之间的关系 可以根据实际应用情况进行调整。
有时,所述类富勒烯纳米粒子在添加到多孔基体之前,先与有机流 体或者有机流体的混合物如油、熔融石蜡等混合。
所述多孔基体由金属、金属合金或半导体材料制成,例如由铜和铜 基合金,铁和铁基合金,钛和钛基合金,镍基合金,硅和铝制成。
可以展望IF纳米粒子在降低摩擦磨损上上有众多应用场合。这种应 用之一例如是在滑动轴承上。
滑动轴承通常用于,出于减轻重量考虑,滚珠轴承禁止使用的场合, 例如汽车以及其它车用发动机,传输系统,泵体,航天及其它众多应用 场合。不幸地,滑动轴承的摩擦损耗高于滚珠轴承。本发明的复合材料 综合上述两种技术的优点。这里,空心纳米粒子起纳米滚珠轴承的作用, 从而能够将摩擦降低至与滚珠轴承相当的水平,而同时又具有滑动轴承 所特有的减轻重量的附加优点,并且未牺牲金属部件的机械性能。
已有文献对WS2类富勒烯纳米粒子的生长机制进行了介绍,参见例如 Y.Feldman等的文章(J.Am.chem.Soc.1998,120,4176)。反应在流化床反 应器中进行,其中,在850℃下,H2S和H2均与WO3纳米粒子反应。一个 封闭的WS2单原子层瞬时形成,纳米粒子的核心被还原成WO3-X,所包含的 硫化物层防止纳米粒子发生烧结,在接下来的步骤中,硫慢慢扩散进入 氧化物核心内并且与氧化物反应。氧原子扩散出去,并且,渐渐地,封 闭的WS2层取代整个氧化物核心,经过几个小时的反应之后,便获得了直 径≤200nm的蜂窝型空心WS2纳米粒子。
制备本发明复合材料的方法包括以下步骤:
i.通过将所要求基体的前驱物材料与起泡剂混合并且进行压实,制 备出多孔基体;
ii.在约500℃的温度下使起泡剂挥发,并且在700-2000℃的温度下 对所获得的基体进行烧结;
iii.在真空中,将所述基体加热至约20-150℃。
iv.在真空中,将在前述步骤iii中获得的基体暴露在位于载体流体 中的金属硫族化合物或者它们的混合物的空心纳米粒子的源材料,以获 得一种复合材料,该复合材料包含所述浸渍有一种金属硫族化合物或者 几种金属硫族化合物的混合物的空心纳米粒子的多孔基体;以及
v.任选地,对在步骤iv中获得的浸渍多孔基体进行烘干,以便当不 希望存在有机流体时,将其去除掉。
更具体地,通过将有机材料如起泡剂加入到所要求的金属或金属合 金粉末中并且之后加热所获得的混合物来制备在前述步骤I中使用的多 孔基体,所述加热循环包括:使有机材料,即起泡剂挥发,以及对所述 混合物进行烧结。在烧结步骤,将基体加热至约500℃达30min,起泡剂 发生汽化。所述烧结在保护性氢气氛中,500-2000℃的温度下进行,具 体温度取决于所使用的金属或金属合金粉末,通过这一步骤,就获得了 具有各种孔隙率(30-60%)的不同基体。
在下一个步骤中,将所获得的多孔基体暴露在一种金属硫族化合物 或者几种这种化合物的混合物的空心纳米粒子的源材料。直径为 10-200nm的IF-WS2或MoS2纳米粒子起固体润滑剂的作用。为了进行对比 试验,将平均尺寸接近4微米的WS2和MoS2粒子(2H)作为固体润滑剂进 行添加。在20-150℃的温度下,将充分混合的有机流体如矿物油、石蜡 等与固体润滑剂(含量:10-15%)的悬浮液真空渗透到所述多孔材料中, 为了对比研究,在渗透处理之后,对其中的一些样品进行油烘干处理。
对所获得的渗透后的多孔基体,任选地进行烘干,以便在基体中含 有可控数量的带有空心纳米粒子的载体流体。所获得的基体的孔隙率为 10-40%,一旦需要,可以任选地,对所述基体进行再压缩。
现在,通过下面的非限制性实施例对本发明进一步描述。
实施例1
将某些能产生低摩擦的金属粉末(用于自润滑滑动轴承,如青铜、 青铜-石墨、铁-石墨以及其它合金和复合材料)与有助于孔隙形成的低 熔点有机材料,如羧甲基纤维素(carbomethyl cellulose),一起搅拌 混合,并且随后在冷却状态压制成型。在这种情况下,在氢气氛中,750 ℃下,对青铜-石墨样品进行烧结。随后,在真空中,使带有2H-WS2和 IF-WS2纳米粒子的油浸渍到多孔金属基体中。之后,在100℃下对样品进 行烘干,以便将润滑剂和其它添加剂去除。最后,将样品再压缩至孔隙 率为25-30%。所述金属粉末的组成如下:Cu-86.4%;Sn-9.6%;石墨-4%。
图1A和1B示出了采用扫描电子显微镜(SEM)获得的金属表面的图 像。图1A是带有2H-WS2片晶的青铜-石墨烧结块的SEM照片,大部分片 晶竖直侧立,通过它们的反应性棱柱形(10 0)面(箭头表示)与金 属表面“胶结”一起。SEM分析表明,所述2H片晶在金属基体的表面上 不均匀分布。所述2H片晶的棱柱棱边与金属表面的粘结(胶粘)使它们 的渗透不能深入金属片材内部,导致所述片晶在金属表面积聚。根据本 实验的结果,可以预料:所述片晶的摩擦学效果随时间很快下降。相反, IF-WS2纳米粒子相当随机地分布在多孔金属基体中(图1B),IF纳米粒 子的光滑本质显示导致其在多孔金属基体中随机分布,分布形式通常是 团聚体。这些微弱结合的团聚体在轻载荷下很容易分解成独立的IF纳米 粒子。EDS分析证实在孔隙内存在IF纳米粒子。
实施例2
图2示出了载荷(单位:kg)以与硬化的钢盘(HRC52)对磨的油烘 干后的多孔青铜-石墨块的摩擦系数(1,2,3)和温度(1’,2’,3’) 的影响。在这些实验中,经过10-30小进的跑合期之后,在载荷30kg, 滑动速度为1m/s的条件下对样品进行试验11个小时。随后,载荷从30kg 开始,以9kg的增量幅度增加,而且在每种载荷下保持1小时。(1,1’) 是对照样品;(2,2’)是含有2H-WS2(6重量%)的基体;(3,3’)是含 有(5重量%)IF-WS2纳米粒子的基体。平均粗糙度(Ra)值(单位:微 米)分别为:原始表面:2;青铜-石墨+2H-WS2片晶:0.28;青铜-石墨 +IF-WS2纳米粒子:0.75。
当载荷较低时,所有烧结样品均表面出较低的摩擦系数,当载荷提 高至某一临界值以上时,摩擦系数和温度急剧增大,意味着摩擦副发生 了咬合。
在载荷为30kg,滑动速度为1m/s的条件下获得的磨损系数结果如 下:青铜-石墨、含有2H-WS2的青铜-石墨和含有IF-WS2的纳米粒子的青 铜-石墨的磨损系数(KW[mm3/mm·N·10-10])分别为8.9,3.3和2。
最显著地,2H-WS2片晶使临界载荷相当平缓增加,而IF-WS2纳米粒 子却使该指标从约35kg增至85kg。上述这些试验后拍摄的SEM显微照片 表明:带有纳米粒子的烧结材料表面试验后未发生显著变化,而且,初 始孔隙大多保留在接触表面上。另外,在孔隙内球状的纳米粒子可以容 易地分辨出,另一方面,青铜-石墨对照块体或者添加2H-WS2粒子的试块 的表面均发生了严重磨损。在这种情况下,由于磨屑转移进入孔隙中, 表面变得相当光滑。采用尖头轮廓仪对摩擦学试验前后的表面粗糙度进 行了测量。
图3归纳示出了粗糙度分析结果,该结果证实了SEM的观察结论。 采用能量散射X0射线分析仪( EDS)对磨损表面进行分析,发现磨损后的 金属发生了严重氧化,而含纳米粒子的复合材料大部分仍未发生氧化。
对用作固体润滑剂的MoS2纳米粒子进行了类似试验。该试验的实施 步骤与实施例2相同。浸渍有IF-MoS2和2H-MoS2的样品在稳定磨擦状态 的摩擦系数均为0.035。IF-MoS2样品发生咬合的临界载荷高于IF-WS2样 品,为120kg。
实施例3
在另一个系列的试验中,在相当恶劣的条件下,对含有和不含有固 体润滑剂的金属件的寿命进行了比较。经过与前述试验类似的跑合期之 后,在滑动速度为1m/s的条件下,载荷逐渐提高至60kg。发现含有6 重量%的2H-WS2片晶的金属件在发生咬合之前的寿命低于1小时。同样条 件下,含有5重量%的IF-WS2的金属件在咬合之前的寿命达18小时,即: 金属件寿命提高近20倍。该载荷之前,干金属可能已发生咬合(跑合期 之后)这些结果与前述结果一致,这意味着采用如此少量的空心纳米粒 子渗透的金属件的寿命得到显著提高。
实施例4
选择青铜复合材料进行本试验。在这种情况下,将著名的浸渍油的 青铜的摩擦磨损特性与采用油+固体润滑剂悬浮液浸渍的样品进行了比 较。将矿物油与固体润滑剂的充分混合的悬浮液真空浸渍入多孔材料中。 浸入多孔基体的固体润滑剂的量为3.2重量%。基体孔隙率的最终结果为 约27-30%。试验采用环-块试验机在实验室气氛(约50%湿度)中进行, 载荷为150-3000N。滑动速度在确定的载荷下由0.5m/s增至1.7m/s,其 中,每半个小时速度的变化一次,每次为0.2m/s。然后,在下一个载荷 下,重复进行这一提高滑动速度的循环。载荷以150N的幅度增加。所有 测量的试验点均表示为PV参量,即:压力×速度。图4示出了添加和未 添加类富勒烯WS2纳米粒子的金属件的PV参量与金属基体的摩擦系数之 间的关系。
与浸渍渍的表面相比,将IF纳米粒子添加至油中可使摩擦系数降低 30-50%。含有油和油+IF的样品的摩擦系数平均值分别为0.009和0.005。 含有油+IF悬浮液的粉末块体表现出非常高的承载能力: PV>5200Nm/(cm2s)。图5示出了在PV=5200的条件下试验之后,采用油+IF 浸渍的块体表面形貌。没有刮削性以及粘附的磨损粒子的多孔表面证实 其处于良好的摩擦状态。
实施例5
本实施例介绍在油烘干之后,采用IF纳米粒子浸渍的铁-镍-石墨粉 末样品的烧结过程及其摩擦学性能。
样品的烧结在保护性氢气氛中,1050℃的温度下进行。浸渍入多孔 基体固体润滑剂的量的变化范围为6.5-8.4重量%。在将悬浮在油中的IF 纳米粒子浸入之后,在150℃下加热样品2个小时,以便将多余的油从金 属基体中去除。本实验中对发生咬合的转折点进行了评价。摩擦磨损试 验与实施例1相似。超过某一临界载荷时,摩擦系数和温度均急剧增加, 意味着配副的金属副发生了咬合。图6中示出了采用油,油+2H和油+IF 浸渍的铁-镍-石墨块的摩擦系数与载荷之间的关系。可以看到:与已知 的添加物(2H-WS2和2H-MoS2)相比,IF纳米粒子的浸入改善了摩擦学性 能。
实施例6
本实施例介绍采用IF纳米粒子浸入的铁-石墨粉末样品的烧结过程 及其摩擦学性能。
样品的烧结与制备到摩擦学试验均与实施例1相似。本实验中对发 生咬合的转折点进行了评价。摩擦磨损试验与实施例1中所述类似。超 过某一临界载荷时,摩擦系数和温度急剧提高,意味道着配副的金属副 发生了咬合。图7示出了采用油、油+2H(5重量%)和油+IF(4.5重量%) 浸渍的铁-石墨块的摩擦系数与载荷之间的关系。可以看到:与已知的添 加物相比,浸入IF纳米粒子改善了摩擦学性能。
实施例7
本实施例涉及用熔融石蜡将IF纳米粒子浸入青铜-石墨样品的多孔 基体中,并且涉及对该样品进行摩擦学测量。样品的烧结和制备以及摩 擦学试验均与实施例1,2类似。所获结果示于表1中。
表1  摩擦系数f   磨损系数10-11,   mm3/mmN   临界载荷P,N  石蜡  0.017   22.9   660  石蜡+2H  0.01   14.6   1020  石蜡+IF  0.007   13.4   1380
可以看到:与将油烘干后具有浸渍IF纳米粒子的样品(f=0.05)相 比,将石蜡加入多孔基体可获得极低的摩擦系数。含有石蜡+IF的样品的 发生咬合的临界载荷(P=1380N)显著高于油烘干的含有IF纳米粒子的 样品的咬合临界值(P=850N)。
实施例8
在可产生阳极电流为15mA/cm2的石英-齿素灯的照射灯下(80mW/cm2) 在10%的HF/H2O混合物中对掺杂Sb的Si(n型)晶片进行阳极化处理40 分钟,从而制备出多孔硅基体。将阳极化的晶片冲洗并且浸泡在KOH溶 液(1M)中,以便将纳米多孔膜溶解掉,并且,使宏观多孔表面暴露在 外表面。采用扫描电子显微镜(SEM)检验处理后的Si晶片,发现其包 括横截面直径为0.1-1微米的致密孔隙图样。将硅晶片解理,发现多孔 层延伸至约10微米深。这意味着多孔Si的顶表面可以被看作是一个类 富勒烯材料纳米粒子的合适受体(host),而且,可以期望摩擦会显著下 降。由于孔隙的深度基本上由反应的电化学参量决定,因此,所述受体 结构可以延伸至0.5-100微米或更大的任何地方。
将Si晶片(1×0.5cm2)样品置于盘-块试验机中,并且在载荷为 20kg、滑动速度为0.4m/s的条件下测量摩擦学参量。所述这些测量中均 使用不锈钢盘。当对干燥的Si进行试验时,测得的摩擦系数为0.24,当 将矿物油添加至Si晶片与金属盘之间时,摩擦系数下降至0.108,然后, 采用含2%的IF-WS2的矿物油代替纯油作为润滑剂。经过短时跑合期之后 获得的摩擦系数为0.03。在上述测量完成之后,采用SEM检测Si晶片, 并且EDS分析发现:在Si晶片的宏观孔隙中存在一种黑色粉末,化学标 定该黑色粉末为WS2。这表明:在跑合期间,类富勒烯纳米粒子嵌入多孔 Si的孔隙内,这一点已被细致的透射电子显微镜分析进一步证实。
实施例9
购买孔隙直径为0.05-0.5微米的多孔铝薄膜,或者,在HF/H2O混合 物(10%)中对铝箔进行阳极化处理,获得具有类似孔隙率的多孔铝薄膜。 对这些多孔样品进行与实施例4类似的测量。测得干燥的铝薄膜表面具 有非常高的摩擦系数(>0.4)。添加油后摩擦系数下降至0.14,并通过添 加2%的类富勒烯WS2(IF-WS2)纳米粒子,则经短时跑合后获得的摩擦系 数为0.012。与实施例4的情形相同,发现IF-WS2纳米粒子聚集在铝膜 的孔隙中,减轻了样品表面的高摩擦。也测量了磨损系数。与采用纯油 润滑的表面相比,采用纯油和2%IF材料润滑的表面的磨损系数下降25 倍。这些结果预示了这两种表面的使用寿命。由于干燥样品是脆性材料, 在极短的加载期间之后就发生劣化,因此不能测得干燥样品的磨损系数。
高效检索全球专利

IPRDB是专利检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,专利查询、专利分析

电话:13651749426

侵权分析

IPRDB的侵权分析产品是IPRDB结合多位一线专利维权律师和专利侵权分析师的智慧,开发出来的一款特色产品,也是市面上唯一一款帮助企业研发人员、科研工作者、专利律师、专利分析师快速定位侵权分析的产品,极大的减少了用户重复工作量,提升工作效率,降低无效或侵权分析的准入门槛。

立即试用