会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 32. 发明申请
    • SET/RESET latch circuit, Schmitt trigger circuit, and MOBILE based D-type flip flop circuit and frequency divider circuit thereof
    • SET / RESET锁存电路,施密特触发电路和基于MOBILE的D型触发器电路及其分频器电路
    • US20070069810A1
    • 2007-03-29
    • US11418207
    • 2006-05-05
    • Kyoung-Hoon YangTae-Ho Kim
    • Kyoung-Hoon YangTae-Ho Kim
    • H03B7/06H03K17/58H03K19/10H03K19/02G06F17/50
    • H03K3/315H03K3/2885H03K3/2897H03K5/00006H03K17/58
    • The present invention relates to SET/RESET latch circuit, Schmitt trigger circuit, and MOBILE based D-type flip flop circuit and frequency divider circuit using the SET/RESET latch circuit and Schmitt trigger circuit. Herein, SET/RESET latch circuit is especially configured with CML-type transistors and negative differential resistance diodes. The SET/RESET latch circuit can be applied for very high speed digital circuits A SET/RESET latch circuit, characterized by including a transistor 1 and 2 in which each emitter of said transistors is commonly connected to a current source, and a negative differential resistance diode 1 and 2 which are respectively connected to each collector of said transistor 1 and 2; and additionally performing to be the relationship of IP
    • 本发明涉及使用SET / RESET锁存电路和施密特触发电路的SET / RESET锁存电路,施密特触发电路和基于MOBILE的D型触发器电路和分频器电路。 这里,SET / RESET锁存电路特别配置有CML型晶体管和负差分电阻二极管。 SET / RESET锁存电路可以应用于非常高速的数字电路A SET / RESET锁存电路,其特征在于包括晶体管1和2,其中所述晶体管的每个发射极共同连接到电流源,负差分电阻 二极管1和2分别连接到所述晶体管1和2的每个集电极; 并且另外执行以下的关系:其中,I P :所述负差分电阻二极管1和2的峰值电流为:与所述晶体管1和2的发射极的公共节点串联连接的电流源的电流; 从而在分别在所述晶体管1和2的基端口上提供归零模式SET和RESET电压的情况下提供单个和差分非归零模式输出。
    • 33. 发明授权
    • Tri-state circuit using nanotube switching elements
    • 使用纳米管开关元件的三态电路
    • US07167026B2
    • 2007-01-23
    • US11032823
    • 2005-01-10
    • Claude L. Bertin
    • Claude L. Bertin
    • H03K19/00H03K19/02H03K19/20
    • G11C11/56B82Y10/00G11C13/025G11C23/00H01H1/0094Y10S977/932Y10S977/936Y10S977/94
    • Nanotube-based logic circuitry is disclosed. Tri-stating elements add an enable/disable function to the circuitry. The tri-stating elements may be provided by nanotube-based switching devices. In the disabled state, the outputs present a high impedance, i.e., are tri-stated, which state allows interconnection to a common bus or other shared communication lines. In embodiments wherein the components are non-volatile, the inverter state and the control state are maintained in the absence of power. Such an inverter may be used in conjunction with and in the absence of diodes, resistors and transistors or as part of or as a replacement to CMOS, biCMOS, bipolar and other transistor level technologies.
    • 公开了基于纳米管的逻辑电路。 三态元件为电路添加一个启用/禁用功能。 三态元件可以由基于纳米管的开关装置提供。 在禁用状态下,输出呈现高阻抗,即三态,哪种状态允许与公共总线或其他共享通信线路的互连。 在其中组件是非易失性的实施例中,在没有电力的情况下维持逆变器状态和控制状态。 这种反相器可以与二极管,电阻器和晶体管结合使用,也可以用于CMOS,biCMOS,双极晶体管和其他晶体管级技术的一部分或替代。
    • 34. 发明授权
    • Circuit elements and parallel computational networks with logically entangled terminals
    • 具有逻辑纠缠终端的电路元件和并行计算网络
    • US07161385B2
    • 2007-01-09
    • US10803094
    • 2004-03-18
    • Pentti Haikonen
    • Pentti Haikonen
    • H03K19/02H03K19/003
    • G06F17/5022
    • The invention relates to circuit elements and computing networks for resolving logical entanglement, in which the allowed logical value of a variable in a set of variables depends on the logical values of the other variables in the set. A circuit element according to the invention comprises two or more logically entangled bi-directional terminals, wherein each bi-directional terminal can assume any one of three logical states, which are a logical true state, a logical false state, and an indefinite state, in which state the bi-directional terminal accepts one of the logical true and logical false states as an external input from an external source. An entanglement logic resolves the logical state of the bi-directional terminals according to a predetermined set of logical entanglement rules between the bi-directional terminals.
    • 本发明涉及用于解决逻辑纠缠的电路元件和计算网络,其中一组变量中的变量的允许逻辑值取决于该集合中其他变量的逻辑值。 根据本发明的电路元件包括两个或更多个逻辑上缠结的双向终端,其中每个双向终端可以采取逻辑真实状态,逻辑假状态和不确定状态的三种逻辑状态中的任何一种, 在哪种状态下,双向终端从外部源接收作为外部输入的逻辑真实和逻辑假状态之一。 纠缠逻辑根据双向终端之间的一组预定的逻辑纠缠规则来解决双向终端的逻辑状态。
    • 35. 发明授权
    • Tri-value decoder circuit and method
    • 三值解码电路及方法
    • US07098833B2
    • 2006-08-29
    • US10860979
    • 2004-06-04
    • Paul StulikHugo Cheung
    • Paul StulikHugo Cheung
    • H03M1/12H03M5/16H03K19/00H03K19/02
    • H03M1/38H03M7/06
    • A tri-value decoder and method for decoding at least three states of an input signal are provided. An exemplary tri-value decoder and method can facilitate decoding of input signals without the use of threshold values and/or forcing a tri-state input signal to a mid-rail value for tri-state detection, and with less dependence on variations in product, process and temperature. In accordance with an exemplary embodiment, an exemplary tri-value decoder circuit comprises a switch circuit, a feedback loop and a sequence detector. An exemplary switch circuit is configured to facilitate sampling of a tri-state input signal through control by the feedback loop, with the sequence detector configured for decoding the tri-state input signal into a two-bit digital signal by detecting at least two samples of the tri-state input signal during a sampling period.
    • 提供了三值解码器和用于解码输入信号的至少三种状态的方法。 示例性三值解码器和方法可以有助于解码输入信号而不使用阈值和/或强制三态输入信号到三态检测的中间轨值,并且对产品变化的依赖性较小 ,工艺和温度。 根据示例性实施例,示例性三值解码器电路包括开关电路,反馈回路和序列检测器。 示例性的开关电路被配置为便于通过反馈环路的控制对三态输入信号进行采样,其中,序列检测器被配置用于通过检测至少两个采样的三态输入信号来解码为三位数字信号 采样周期内的三态输入信号。
    • 36. 发明申请
    • Nanotube-based logic driver circuits
    • 基于纳米管的逻辑驱动电路
    • US20050280436A1
    • 2005-12-22
    • US11033216
    • 2005-01-10
    • Claude Bertin
    • Claude Bertin
    • G11C13/02H03K19/003H03K19/02
    • G11C13/025B82Y10/00G11C23/00G11C2213/16H03K19/02
    • Nanotube based logic driver circuits. These include pull-up driver circuits, push-pull driver circuits, tristate driver circuits, among others. Under one embodiment, an off-chip driver circuit includes a differential input having first and second signal links, each coupled to a respective one of two differential, on-chip signals. At least one output link is connectable to an off-chip impedance load, and at least one switching element has an input node, an output node, a nanotube channel element, and a control structure disposed in relation to the nanotube channel element to controllably form and unform an electrically conductive channel between said input node and said output node. The input node is coupled to a reference signal and the control structure is coupled to the first and second signal links. The output node is coupled to the output link, and the channel element is sized to carry sufficient current to drive said off-chip impedance load.
    • 基于纳米管的逻辑驱动电路。 这些包括上拉驱动电路,推挽驱动电路,三态驱动电路等。 在一个实施例中,片外驱动器电路包括具有第一和第二信号链路的差分输入,每个信号链路耦合到两个差分片上信号中的相应一个。 至少一个输出链路可连接到片外阻抗负载,并且至少一个开关元件具有输入节点,输出节点,纳米管通道元件和相对于纳米管通道元件设置的可控制地形成的控制结构 并且在所述输入节点和所述输出节点之间取消导电通道。 输入节点耦合到参考信号,并且控制结构耦合到第一和第二信号链路。 输出节点耦合到输出链路,并且信道单元的大小适于承载足够的电流以驱动所述片外阻抗负载。
    • 38. 发明授权
    • Driver circuitry for programmable logic devices
    • 用于可编程逻辑器件的驱动电路
    • US6130555A
    • 2000-10-10
    • US22663
    • 1998-02-12
    • Bruce B. Pedersen
    • Bruce B. Pedersen
    • H03K19/173H03K19/094H03K19/02
    • H03K19/1736
    • Buffers for driving interconnection conductors on programmable logic devices are shared between two types of uses, i.e., to drive static programmable connections to interconnection conductors, and to drive dynamically controllable connections to other interconnection conductors. The dynamically controllable connections are preferably tri-statable. Signals for effectuating the dynamic control are preferably generated on the programmable logic device near the tri-state-type connections. For example, a nearby logic module ("subregion") may provide the dynamic control signal. This reduces the extent of routing for, and consequent delay of, the dynamic control signal.
    • 用于驱动可编程逻辑器件上的互连导体的缓冲器在两种类型的使用之间共享,即驱动到互连导体的静态可编程连接,以及驱动与其他互连导体的动态可控连接。 动态可控的连接优选是三态的。 用于实现动态控制的信号优选地在三状态连接附近的可编程逻辑器件上产生。 例如,附近的逻辑模块(“子区域”)可以提供动态控制信号。 这减少了路由的程度并因此延迟了动态控制信号。