会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • MEMS DEVICE POSITIONING APPARATUS, TEST SYSTEM, AND TEST METHOD
    • MEMS器件定位装置,测试系统和测试方法
    • US20150145543A1
    • 2015-05-28
    • US14090068
    • 2013-11-26
    • FREESCALE SEMICONDUCTOR, INC.
    • Thomas J. Birk
    • G01N25/00G01R31/00
    • G01R31/003B81C99/005
    • A positioning apparatus includes a support structure, a positioning structure, and a fixture for retaining MEMS devices. A shaft spans between the support structure and the positioning structure, and is configured to rotate about a first axis relative to the support structure in order to rotate the positioning structure and the fixture about the first axis. The positioning structure includes a pair of beams spaced apart by a third beam. Another shaft spans between the pair of beams and is configured to rotate about a second axis relative to the positioning structure in order to rotate the fixture about the second axis. Methodology entails installing the positioning apparatus into a chamber, orienting the fixture into various positions, and obtaining output signals from the MEMS devices to determine functionality of the MEMS devices.
    • 定位装置包括支撑结构,定位结构和用于保持MEMS装置的固定装置。 轴跨过支撑结构和定位结构,并且构造成相对于支撑结构围绕第一轴线旋转,以便围绕第一轴线旋转定位结构和固定装置。 定位结构包括由第三梁间隔开的一对梁。 另一个轴跨在一对梁之间,并且构造成相对于定位结构围绕第二轴线旋转,以便围绕第二轴线旋转固定件。 方法学需要将定位装置安装到室中,将夹具定向到各种位置,并且从MEMS装置获得输出信号以确定MEMS装置的功能。
    • 4. 发明申请
    • MCU-BASED COMPENSATION AND CALIBRATION FOR MEMS DEVICES
    • 基于MCU的MEMS器件的补偿和校准
    • US20140266246A1
    • 2014-09-18
    • US13795704
    • 2013-03-12
    • Bruno DebeurreTehmoor M. DarRaimondo P. Sessego
    • Bruno DebeurreTehmoor M. DarRaimondo P. Sessego
    • G01R35/00B81B7/02
    • G01R35/005B81C99/005
    • A sensor system includes a microelectromechanical systems (MEMS) sensor, a processor, measurement circuitry, stimulus circuitry and memory. The MEMS sensor is configured to provide an output responsive to physical displacement within the MEMS sensor to the measurement circuitry. The stimulus circuitry is configured to provide a stimulus signal to the MEMS sensor to cause a physical displacement within the MEMS sensor. The measurement circuitry is configured to process the output from the MEMS sensor and provide it to the processor. The processor is configured to generate stimulus signals and provide them to the stimulus circuitry for provision to the MEMS sensor. The processor is configured to monitor the output from the measurement circuitry corresponding to the physical displacement occurring in the MEMS sensor, calculate MEMS sensor characteristics based on the output, and update calibration values based on the output. Methods for monitoring and calibrating MEMS sensors are also provided.
    • 传感器系统包括微机电系统(MEMS)传感器,处理器,测量电路,刺激电路和存储器。 MEMS传感器被配置为提供响应于MEMS传感器内的物理位移到测量电路的输出。 激励电路被配置为向MEMS传感器提供刺激信号以引起MEMS传感器内的物理位移。 测量电路被配置为处理来自MEMS传感器的输出并将其提供给处理器。 处理器被配置为产生刺激信号并将其提供给刺激电路以供应到MEMS传感器。 处理器被配置为监视与MEMS传感器中发生的物理位移相对应的测量电路的输出,基于输出计算MEMS传感器特性,并基于输出更新校准值。 还提供了用于监测和校准MEMS传感器的方法。
    • 5. 发明授权
    • Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer
    • 微/纳机械测试系统采用拉拔式测试架,带有推挽式变压器
    • US08789425B2
    • 2014-07-29
    • US13888959
    • 2013-05-07
    • Hysitron Inc.
    • Yunje OhEdward CyrankowskiZhiwei ShanSyed Amanula Syed Asif
    • G01L1/00
    • G01L1/005B81C99/005G01N3/08G01N2203/0286G01N2203/0647
    • A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.
    • 一种用于对包括第一结构和第二结构的微米至纳米尺度材料样品的拉伸测试的基于微机械或微机电系统(MEMS)的推挽式机械变压器。 第二结构通过至少一个可使第二结构相对于第一结构运动的柔性元件耦合到第一结构,其中第二结构相对于第一结构设置,以便在第一结构之间形成牵引间隙 以及第二结构,使得当在拉伸延伸方向上施加外推力并推动所述第二结构时,所述牵引间隙的宽度增加,以便对安装在所述牵引间隙上的第一样品 第一结构上的安装区域和第二结构上的第二样品安装区域。
    • 6. 发明申请
    • METHOD AND DEVICE FOR MEASURING A MICROELECTROMECHANICAL SEMICONDUCTOR COMPONENT
    • 用于测量微电子半导体元件的方法和装置
    • US20130247688A1
    • 2013-09-26
    • US13990349
    • 2011-10-26
    • Peter Binkhoff
    • Peter Binkhoff
    • B81C99/00
    • G01L9/0098B81C99/003B81C99/005G01L27/002G01R31/275G01R31/2887G01R31/2891
    • In the method for measuring a micromechanical semiconductor component which comprises a reversibly deformable measuring element sensitive to mechanical stresses, which is provided with electronic circuit elements and terminal pads for tapping measurement signals, the measuring element (18) of the semiconductor component (16), for the purpose of determining the distance/force and/or distance/pressure characteristic curve thereof, is increasingly deformed by mechanical action of a plunger (32) which can in particular be advanced step by step. After a or after each step-by-step advancing movement of the plunger (32) by a predetermined distance quantity, the current measurement signals are tapped via the terminal pads (24). The semiconductor component (16) is qualified on the basis of the obtained measurement signals representing the distance/force and/or distance/pressure characteristic curve.
    • 在包括对机械应力敏感的可逆变形测量元件的微机电半导体部件的测量方法中,其具有用于分接测量信号的电子电路元件和端子焊盘,半导体部件(16)的测量元件(18) 为了确定距离/力和/或其距离/压力特性曲线的目的,通过柱塞(32)的机械作用越来越大地变形,这可以特别地逐步提前。 在柱塞(32)的逐步前进运动预定距离之后或之后,经由端子焊盘(24)敲击电流测量信号。 基于获得的表示距离/力和/或距离/压力特性曲线的测量信号,对半导体部件(16)进行限定。
    • 7. 发明授权
    • Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer
    • 微/纳机械测试系统采用拉拔式测试架,带有推挽式变压器
    • US08434370B2
    • 2013-05-07
    • US12575368
    • 2009-10-07
    • Yunje OhEdward CyrankowskiZhiwei ShanSyed Amanula Syed Asif
    • Yunje OhEdward CyrankowskiZhiwei ShanSyed Amanula Syed Asif
    • G01L1/00
    • G01L1/005B81C99/005G01N3/08G01N2203/0286G01N2203/0647
    • A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.
    • 一种用于对包括第一结构和第二结构的微米至纳米尺度材料样品的拉伸测试的基于微机械或微机电系统(MEMS)的推挽式机械变压器。 第二结构通过至少一个可使第二结构相对于第一结构运动的柔性元件耦合到第一结构,其中第二结构相对于第一结构设置,以在第一结构之间形成牵引间隙 以及第二结构,使得当在拉伸延伸方向上施加外推力并推动所述第二结构时,所述牵引间隙的宽度增加,以便对安装在所述牵引间隙上的第一样品 第一结构上的安装区域和第二结构上的第二样品安装区域。
    • 8. 发明申请
    • APPARATUS AND METHOD FOR IN SITU TESTING OF MICROSCALE AND NANOSCALE SAMPLES
    • 用于微观和纳米样品样品测试的装置和方法
    • US20110317157A1
    • 2011-12-29
    • US12823743
    • 2010-06-25
    • Wonmo KangM. Taher A. Saif
    • Wonmo KangM. Taher A. Saif
    • G01N21/01
    • G01N3/02B81C99/005G01N2203/0016
    • According to example embodiments of the invention, a microscale testing stage comprises a frame having first and second opposing ends and first and second side beams, at least one deformable force sensor beam, a first longitudinal beam having a free end, a second longitudinal beam having a facing free end, a support structure, and a pair of slots disposed at each of the free ends. In certain embodiments, a separately fabricated microscale or nanoscale specimen comprises a central gauge length portion of a material to be tested, and first and second hinges providing a self-aligning mechanism for uniaxial loading. In other embodiments, a layer of a conductive material defines first and second conductive paths and an open circuit that can be closed by the specimen across the gap. In other embodiments, the stage is formed of a high melting temperature material.
    • 根据本发明的示例性实施例,微尺度测试台包括具有第一和第二相对端以及第一和第二侧梁的框架,至少一个可变形力传感器梁,具有自由端的第一纵向梁,具有 面向自由端,支撑结构以及设置在每个自由端的一对槽。 在某些实施例中,单独制造的微米级或纳米尺度样本包括待测试材料的中心标尺长度部分,以及提供用于单轴加载的自对准机构的第一和第二铰链。 在其他实施例中,导电材料层限定了第一和第二导电路径以及开放电路,该开路可被样品跨过间隙封闭。 在其它实施方案中,该阶段由高熔点材料形成。
    • 9. 发明申请
    • DEFECT DETECTING APPARATUS, DEFECT DETECTING METHOD, INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM THEREFOR
    • 缺陷检测装置,缺陷检测方法,信息处理装置,信息处理方法及其程序
    • US20100067780A1
    • 2010-03-18
    • US12516445
    • 2007-11-30
    • Hiroshi Kawaragi
    • Hiroshi Kawaragi
    • G06K9/00
    • G01N21/95607B81C99/005G06T7/001G06T2207/30148
    • A defect detecting apparatus captures images of a protein chip formed on each die of a wafer at a plurality of different focal positions, with respect to every division region obtained by dividing each die in plurality; stores inspection target images for every division region at every focal position together with an ID for identifying each division region; creates a model image for every division region at every focal position by calculating an average luminance value of pixels of each inspection target image having the corresponding ID; extracts a difference between the model image and each inspection target image as a difference image; extracts a Blob having an area larger than a preset value from each difference image as a defect; and classifies the kind of the defect based on a feature point of the extracted Blob.
    • 缺陷检测装置相对于通过将每个管芯分割成多个而获得的每个分割区域捕获在多个不同焦点位置处形成在晶片的每个管芯上的蛋白质芯片的图像; 将每个焦点位置处的每个划分区域的检查对象图像与用于识别每个划分区域的ID一起存储; 通过计算具有对应ID的每个检查对象图像的像素的平均亮度值,在每个焦点位置为每个划分区域创建模型图像; 提取模型图像与每个检查对象图像之间的差作为差分图像; 从每个差异图像提取具有大于预设值的面积的Blob作为缺陷; 并根据提取的Blob的特征点对缺陷的种类进行分类。