会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明申请
    • COMPOUND SPRING MEMS RESONATORS FOR FREQUENCY AND TIMING GENERATION
    • 用于频率和时序生成的复合弹簧MEMS谐振器
    • US20160118954A1
    • 2016-04-28
    • US14883435
    • 2015-10-14
    • Micrel, Inc.
    • John Ryan Clark
    • H03H9/24H02N1/00
    • H03H9/2405H02N1/008H03H9/02244H03H9/2431H03H9/2452H03H2009/02251H03H2009/02283H03H2009/02307H03H2009/0233H03H2009/02496
    • A compound spring MEMS resonator includes a resonator body constructed using one or more spring unit cells forming a compound spring block and one or more compound spring blocks forming the resonator body. Each compound spring block is anchored at nodal points to ensure a high quality factor. The resonator body further includes masses attached to the open ends of the compound spring block and capacitively coupled to drive/sense electrodes. The dimensions of the spring unit cells, the number of spring unit cells for a compound spring block, the size and weight of the masses, and the length and width of the support beams are selected to realize a desired resonant frequency. Meanwhile, the number of compound spring blocks is selected to tune the desired electrical characteristics, such as impedance, of the MEMS resonator.
    • 复合弹簧MEMS谐振器包括使用形成复合弹簧块的一个或多个弹簧单元构成的谐振器主体和形成谐振器体的一个或多个复合弹簧块。 每个复合弹簧块锚定在节点,以确保高品质因素。 谐振器体还包括附接到复合弹簧块的开口端的质量,并且电容耦合到驱动/感测电极。 选择弹簧单元的尺寸,复合弹簧块的弹簧单元的数量,质量的尺寸和重量以及支撑梁的长度和宽度以实现期望的谐振频率。 同时,选择复合弹簧块的数量来调节MEMS谐振器的期望的电特性,例如阻抗。
    • 7. 发明申请
    • OUT-OF-PLANE RESONATOR
    • 超平面谐振器
    • US20130002363A1
    • 2013-01-03
    • US13173449
    • 2011-06-30
    • Mehrnaz MotieeEmmanuel P. QuevyDavid H. Bernstein
    • Mehrnaz MotieeEmmanuel P. QuevyDavid H. Bernstein
    • H03B5/30
    • H03H9/2457H03H9/2452H03H2009/02299H03H2009/02511
    • A microelectromechanical system (MEMS) device includes a resonator anchored to a substrate. The resonator includes a first strain gradient statically deflecting a released portion of the resonator in an out-of-plane direction with respect to the substrate. The resonator includes a first electrode anchored to the substrate. The first electrode includes a second strain gradient of a released portion of the first electrode. The first electrode is configured to electrostatically drive the resonator in a first mode that varies a relative amount of displacement between the resonator and the first electrode. The resonator may include a resonator anchor anchored to the substrate. The first electrode may include an electrode anchor anchored to the substrate in close proximity to the resonator anchor. The electrode anchor may be positioned relative to the resonator anchor to substantially decouple dynamic displacements of the resonator relative to the electrode from changes to the substrate.
    • 微机电系统(MEMS)装置包括锚定到基板的谐振器。 谐振器包括使第一应变梯度在相对于衬底的平面外方向上静态偏转谐振器的释放部分。 谐振器包括锚定到基板的第一电极。 第一电极包括第一电极的释放部分的第二应变梯度。 第一电极被配置为以改变谐振器和第一电极之间的相对的位移量的第一模式静电驱动谐振器。 谐振器可以包括锚定到衬底的谐振器锚。 第一电极可以包括锚固到靠近谐振器锚的衬底的电极锚。 电极锚定件可以相对于谐振器锚固件定位,以基本上使谐振器相对于电极的动态位移与基板的变化相分离。
    • 8. 发明申请
    • MEMS RESONATORS
    • MEMS谐振器
    • US20100283353A1
    • 2010-11-11
    • US12601038
    • 2008-05-28
    • CASPER VAN DER AVOORT
    • CASPER VAN DER AVOORT
    • H03H9/24
    • H03H9/2452H03H9/02244H03H9/02259H03H2009/02488H03H2009/02496
    • A MEMS piezoresistive resonator (8, 78) is driven at a higher order eigenmode (32) than the fundamental eigenmode (31). The route of flow of a sense current (22) is arranged in relation to a characteristic of the higher order eigenmode (32), for example by being at a point of maximum displacement (50) or at a point of maximum rate of change with respect to distance (x) of displacement of the higher order eigenmode (32). The route of flow of the sense current (22) may be arranged by fabricating the MEMS piezoresistive resonator (8, 78) with a trench (15) formed between two beams (11, 12) of the MEMS piezoresistive resonator (8, 78), the end of the trench being located at the above mentioned position.
    • MEMS压阻谐振器(8,78)以比基本本征模式(31)高的本征模式(32)被驱动。 感测电流(22)的流动路径相对于高阶本征模式(32)的特性被布置,例如通过位于最大位移(50)的点或最大变化速度的点处, 相对于高阶本征模式(32)的位移距离(x)。 感测电流(22)的流动路径可以通过用形成在MEMS压阻谐振器(8,78)的两个光束(11,12)之间的沟槽(15)制造MEMS压阻谐振器(8,78)来布置, 沟槽的端部位于上述位置。
    • 10. 发明申请
    • Method and Apparatus for Frequency Tuning of a Micro-Mechanical Resonator
    • 微机械谐振器频率调谐方法与装置
    • US20070096850A1
    • 2007-05-03
    • US11550983
    • 2006-10-19
    • Xiangxiang HuangJames MacDonaldWan-Thai Hsu
    • Xiangxiang HuangJames MacDonaldWan-Thai Hsu
    • H03H9/00
    • H03H3/0077H03H9/02393H03H9/1057H03H9/2452H03H2009/0233Y10T29/42
    • A method for modifying the resonance frequency of a micro-mechanical resonator, and resonators on which the method is practiced. A packaged resonator is trimmed by directing electromagnetic energy to the resonator through a transparent portion of the package. The removal of mass (by the energy) affects the resonance frequency of the resonator in a predictable manner. In some embodiments, the energy is sourced from a femtosecond laser. In some variations of the illustrative embodiment, the amount of mass to be removed is determined as a function of its location on the resonator. A mass-trimming map is developed that identifies a plurality of potential mass-trimming sites on the resonator. A site can be classified as a fine-tuning site or a coarse-tuning site as a function of the degree to which mass removal at those sites affects the resonance frequency. The sites can also be characterized as a function of their position relative to features of the resonator (e.g., nodal lines, etc.). Based on a differential between the measured and desired resonance frequency of the resonator, and expressions that relate resonance frequency to location-dependent mass, actual sites for mass removal are selected from among of the plurality of potential mass-trimming sites.
    • 一种用于修改微机械谐振器的谐振频率的方法以及实施该方法的谐振器。 通过将电磁能量通过封装的透明部分引导到谐振器来修整封装的谐振器。 质量(通过能量)的去除以可预测的方式影响谐振器的谐振频率。 在一些实施例中,能量源自飞秒激光。 在说明性实施例的一些变型中,要去除的质量的量被确定为其在谐振器上的位置的函数。 开发了一种质量修剪图,其识别谐振器上的多个潜在的质量修剪位置。 随着这些位置的质量去除程度会影响共振频率,一个站点可以被归类为微调站点或粗调站点。 这些位置也可以被表征为它们相对于谐振器的特征(例如节点线等)的位置的函数。 基于谐振器的测量和期望谐振频率之间的差异以及将共振频率与位置相关质量相关联的表达式,从多个潜在质量修剪位置中选择用于质量去除的实际位置。