会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 Phosphates US27496472 1972-07-25 US3870737A 1975-03-11 BIRCHALL JAMES DEREK; CASSIDY JOHN EDWARD
Complex phosphates of aluminum containing a halogen and chemically-bound molecule of a hydroxy compound, which may be water or an organic hydroxy compound. A typical example is a complex phosphate containing ethyl alcohol having the empirical formula AlPClH25C8O8. They are most conveniently prepared by the reaction of an aluminum halide with the appropriate hydroxy compound and orthophosphoric acid, under relatively cool conditions. The compounds are generally soluble in water and polar organic solvents. They decompose at low temperatures to give aluminum orthophosphate, thereby providing a method for producing aluminum phosphate in many forms, for example, fibers, coatings, binders and fine particles, from a solution in water or organic solvents.
142 Composite materials comprising epoxy resin matrix and carbon fibers US23375172 1972-03-10 US3853610A 1974-12-10 BYRNE J; LEDBETTER H
This invention is directed to strongly bonded composite materials and a process for preparing the same, such materials comprising (1) a resinous matrix containing (2) carbon fibers having a Young''s modulus parallel to the fiber axis of at least about 12 X 106 pounds per square inch and having a substantially continuous coating of amorphous carbon applied to the surface of such fibers prior to admixture with the resin matrix.
143 一种自融合石墨纤维及其制备方法 PCT/CN2018/077303 2018-02-27 WO2018196475A1 2018-11-01 高超; 畅丹; 李拯; 高微微

发明公开了一种自融合石墨纤维及其制备方法。将干燥的石墨烯纤维浸入溶剂中,溶胀后提出搭接在一起,待其干燥后氧化石墨烯纤维实现了相互融合粘结,进一步还原即可得到自融合石墨烯纤维。自融合的整个过程可在1分钟之内快速完成,不须添加额外的粘结剂,操作简单、省时、环保,粘结强度高,能保持石墨烯纤维本身优异的机械强度、电导率等性能,对进一步制备出具有优异性能的石墨烯纤维二维织物或三维网络体材料有极大的研究及应用价值。

144 NANOTUBOS DE CARBONO DE PARED MULTIPLE (MWCNT) PARA ADSORCION DE HIDROGENO, METODO DE OBTENCION Y METODO DE PURIFICACION PCT/CL2017/050013 2017-03-10 WO2017152298A1 2017-09-14 MOSQUERA VARGAS, Edgar Eduardo; MOREL ESCOBAR, Mauricio; CARVAJAL HERRERA, Nicolas Antonio; TAMAYO CALDERON, Rocio Maria; CABRERA PAPAMIJA, Gerardo

La presente invención se refiere a nanotubos de carbono de pared múltiple (MWCNT de sus siglas en inglés, Multi-Wall Carbon Nanotubes) para adsorción de hidrógeno molecular, método de obtención de los nanotubos por técnica de deposición química en fase vapor asistida por aerosol (AACVD, de sus siglas en inglés, Aerosol Assisted Chemical Vapor Deposition) utilizando como catalizador mineral magnetita con una pureza >85%, y método de purificación de dichos nanotubos obtenidos para incrementar su capacidad de adsorción de hidrógeno.

145 一种和氮共掺杂的聚丙烯腈基纤维及其制备方法 PCT/CN2013/071657 2013-02-19 WO2014127501A1 2014-08-28 徐海波; 芦永红

发明涉及一种和氮共掺杂的聚丙烯腈基纤维及其制备方法。该氧和氮共掺杂的聚丙烯腈基碳纤维,由原料聚丙烯腈基碳纤维经过电化学改性制备得到,使其表面具有含氧活性官能团和含氮活性官能团组成的活性层,其中,含氮活性官能团是由原料聚丙烯腈基碳纤维中自身含有的掺杂氮经过电化学改性被活化而得到的。该氧和氮共掺杂的聚丙烯腈基碳纤维的制备方法包括以下步骤:将原料聚丙烯腈基碳纤维置于电解质溶液中,经过在电化学氧化和电化学还原之间的循环处理后,得到所述氧和氮共掺杂的聚丙烯腈基碳纤维。本发明的氧和氮共掺杂的聚丙烯腈基碳纤维同时具有氧化还原反应的准电容特性和对氧阴极还原反应的电催化特性。

146 CARBON-ON-CARBON MANUFACTURING PCT/US2013/023913 2013-01-30 WO2013116378A1 2013-08-08 MUNGAS, Gregory; BUCHANAN, Larry; BANZON, Jose T.

The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations (210, 240) that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric (306) that makes up the C/C products.

147 ELECTROCHEMICAL TREATMENT OF CARBONE FIBERS PCT/FR8700480 1987-12-01 WO8804336A3 1988-07-14 SANCHEZ MANUEL; DE-SARMOT GEORGES; BARBIER BLANDINE
The method is of the type wherein the carbon (3) is brought in contact with a solution (2) of an amino compound in a bipolar solvent by polarizing it positively with respect to a cathode (5). According to the invention, the solvent is an organic compound, preferably aprotic, with high anodic oxidation potential, and the solution is substantially free of water.
148 繊維集合体の製造方法及びプリプレグシートの製造方法 PCT/JP2022/024337 2022-06-17 WO2022265100A1 2022-12-22 辻川 一輝; 石川 健; 松井 純; 池田 勝司
複数の繊維と繊維処理剤とを撹拌槽に投入し、該繊維と繊維処理剤との混合物を撹拌翼によって撹拌して造粒することを含む繊維集合体の製造方法であって、該繊維が炭素繊維を含み、該繊維が引き揃うように造粒する、繊維集合体の製造方法。炭素繊維を含む複数の繊維と液体とを撹拌槽に投入し、該繊維と液体との混合物を撹拌翼によって撹拌することにより直接長球形状又はストランド形状の繊維集合体を得る、繊維集合体の製造方法。
149 VERFAHREN ZUR HERSTELLUNG VON GRAPHENFASERN PCT/EP2020/064995 2020-05-29 WO2021004692A1 2021-01-14 KOEHNE, Martin

Verfahren zur Herstellung von Graphenfasern umfassend die Schritte: a. Bereitstellen von ein-oder mehrlagigen Graphen- oder Graphenoxidplättchen auf Basis von Graphen bzw. Graphenoxid, b. Anlagern eines Übergangsmetalls oder eines Übergangsmetalloxids auf den Graphen- oder Graphenoxidplättchen mittels eines Abscheideverfahrens, c. Spinnen, insbesondere Nassspinnen oder Trockenspinnen, einer Graphenfaser bzw. Graphenoxidfaser durch Eindüsen einer Spinnlösung, in der die aus Schritt b) erhaltenen Graphen- bzw. Graphenoxidplättchen dispergiert sind, d. Behandeln, insbesondere Reduktion, der Graphenfaser bzw. der Graphenoxidfaser in einer ein Reduktionsmittel, insbesondere Wasserstoff, enthaltenden Prozessatmosphäre bei einer bestimmten Behandlungstemperatur, wobei bei Vorliegen einer Graphenoxidfaser diese zu einer Graphenfaser reduziert wird, wobei die Graphenfaser bzw. Graphenoxidfaser derart behandelt wird, dass das Übergangsmetalloxid im Schritt d) nur teilweise reduziert oder dass das Übergangsmetall in einem auf den Schritt d) folgenden Schritt teilweise oxidiert wird, wobei die Teilreduktion bzw. Teiloxidation insbesondere derart erfolgt, dass in der fertigen Graphenfaser ein bestimmter Anteil des Übergangsmetalloxids vorliegt, der kleiner ist als der Anteil des Übergangsmetalls und der insbesondere kleiner als 10 Gew.% ist.

150 CNS-INFUSED CARBON NANOMATERIALS AND PROCESS THEREFOR PCT/US2013/040548 2013-05-10 WO2013184285A1 2013-12-12 LEDFORD, Jordan, T.; LASZEWSKI, Matthew, R.; MALECKI, Harry, C.

A composition includes a carbon nanotube (CNT) yarn or sheet and a plurality of carbon nanostructures (CNSs) infused to a surface of the CNT yarn or sheet, wherein the CNSs are disposed substantially radially from the surface of the CNT yarn or outwardly from the sheet. Such compositions can be used in various combinations in composite articles.

151 СПОСОБ СТАБИЛИЗАЦИИ УГЛЕРОДСОДЕРЖАЩЕГО ВОЛОКНА И СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНОГО ВОЛОКНА PCT/RU2010/000421 2010-07-28 WO2011014105A1 2011-02-03 СОБОЛЕВА, Марина Владимировна; УСОВ, Виталий Викторович; ШМЫРЕВ, Владислав Васильевич

Группа изобретений относится к области получения высокопрочных углеродных волокон, преимущественно изготавливаемых из органического исходного материала (предшественника). Заявлен способ стабилизации углеродсодержащего волокна (предшественника), в котором волокно, помещенное в газовую среду, подвергают обработке микроволновым излучением с одновременным нагревом газовой среды. Волокно в частном случае помещают в рабочую камеру с расположенной внутри нее газовой средой, нагрев газовой среды осуществляют путем нагрева камеры (например, ее стенок) одновременно с обработкой волокна микроволновым излучением. Согласно второму аспекту изобретения заявлен способ получения углеродного волокна, который включает в себя по крайней мере этапы стабилизации и карбонизации волокна, в котором стабилизацию предшественника осуществляют вышеописанным способом путем воздействия на волокно микроволновым излучением с одновременным нагревом среды, в которой помещено волокно. После карбонизации волокна, как вариант, возможно его дополнительная графитация. При необходимости карбонизация и/или графитация стабилизированного волокна также может осуществляться путем его комплексной обработки микроволновым излучением с одновременным нагревом среды, в которую волокно помещено для карбонизации/графитации. В результате снижается время стабилизации волокон предшественников, что влечет за собой снижение энергозатрат и повышение производительности процесса получения углеродного волокна.

152 STRUCTURE FIBREUSE TRIDIMENSIONNELLE EN FIBRES REFRACTAIRES, PROCEDE POUR SA REALISATION ET APPLICATION AUX MATERIAUX COMPOSITES THERMOSTRUCTURAUX. PCT/FR0302692 2003-09-11 WO2004025003A3 2004-05-06 OLRY PIERRE; BRETON YANNICK CLAUDE; BONNAMY SYLVIE; NICOLAUS NATHALIE; ROBIN-BROSSE CHRISTIAN; SION ERIC
Des nanotubes de carbone sont incorporés à la structure fibreuse par croissance sur les fibres réfractaires du substrat, de manière à obtenir une structure tridimensionnelle en fibres réfractaires enrichie en nanotubes de carbone.
153 METHOD FOR MAKING CARBON FIBRE PREFORMS PCT/FR1998/002298 1998-10-27 WO99022052A1 1999-05-06
The invention concerns a method for making a carbon fibre preform which consists in using at least one yarn or cable formed of continuous fibres derived from carbon precursor fibres previously subjected to an intermediate carbonization such that the fibres have a carbon ratio between 70 % and 90 % and having a tensile failure resistance not less than 3000 MPa's after they have been entirely carbonized without necessarily having been tensioned, and in using the slightly twisted yarn or cable for making the preform, before subjecting it to a thermal treatment to complete the transformation of the continuous fibres into carbon fibres. The yarn or cable can be subjected to a drawing-cracking process to obtain a yarn or cable formed of discontinuous fibres whereof the cohesion is ensured by slight twisting, or by taping.
154 Method and apparatus for manufacturing carbon fibers US17004399 2020-08-27 US11525193B2 2022-12-13 Keith Daniel Humfeld; Scott Hartshorn
A method and apparatus for manufacturing a carbon fiber. Pressure is applied to a filament to change a cross-sectional shape of the filament and create a plurality of distinct surfaces on the filament. The filament is converted into a graphitic carbon fiber having the plurality of distinct surfaces. A plurality of sizings is applied to the plurality of distinct surfaces of the graphitic carbon fiber in which the plurality of sizings includes at least two different sizings.
155 Non-woven graphene fiber fabric and preparing method thereof US15576601 2017-03-28 US20180282917A1 2018-10-04 Chao GAO; Zheng LI
A non-woven graphene fiber fabric and a preparing method therefor is provided. The non-woven fabric is formed by disorderly piled graphene fibers which are bonded with each other. The fibers are overlapped into a permeable network for passing through light, liquid or gas. The non-woven graphene fiber fabric is completely formed by graphene fibers without polymeric materials serving as skeleton or adhesive, and has good mechanical strength and flexibility. After reduction, the network structure built by the graphene fibers has excellent electrical and thermal conductivity and can be utilized as a high-performance fabric with multiple functions.
156 Method for preparing carbon nanotube fiber reinforced with carbon precursor US14390463 2013-04-11 US10065862B2 2018-09-04 Young Jin Jeong; Jun Young Song; Dong Hwan Cho; Byung Kuk Kim
The present invention relates to carbon nanotube fibers reinforced with a carbon precursor and a method for manufacturing the same. The carbon nanotube fibers reinforced with a carbon precursor according to the present invention are carbonized by the empty space inside the carbon nanotube fibers being filled with a carbon precursor, and therefore, are highly effective in that the mechanical and thermal properties are improved due to effective stress transfer and contact resistance decrease, and these properties are maintained intact even at high temperatures.
157 INSERTION OF CATALYST INTO DRY CARBON FIBERS PRIOR TO RESIN IMPREGNATION US15333826 2016-10-25 US20180112048A1 2018-04-26 Keith Daniel Humfeld; Gwen Marie Lanphere Gross
Systems and methods are provided for fabrication of enhanced carbon fiber laminates that utilize encapsulated catalyst. One embodiment is a method that includes acquiring a batch of dry fibers, and acquiring a batch of catalyst capsules that each comprise catalyst that accelerates polymerization of monomers of a resin, and a shell that encapsulates the catalyst and liquefies at a curing temperature. The method further includes interspersing the catalyst capsules among the dry fibers, and impregnating the fibers with the resin after interspersing the catalyst capsules with the fibers.
158 Chopped carbon fiber bundles and method for producing chopped carbon fiber bundles US14647343 2013-11-22 US09803066B2 2017-10-31 Tadashi Ohtani; Takayuki Kiriyama; Yukio Nishimoto
Provided are: chopped carbon fiber bundles which have high fluidity without decreasing the dispersibility of carbon fibers and the physical properties of a molded product; and a method for producing chopped carbon fiber bundles with high productivity. Chopped carbon fiber bundles, each of which contain a carbon fiber bundle having a total fineness of from 25,000 dtex to 45,000 dtex (inclusive) and a sizing agent in an amount of from 1% by mass to 5% by mass (inclusive) relative to the total mass of the chopped carbon fiber bundle. The length (L) of each chopped carbon fiber bundle along the fiber direction of the carbon fiber bundle is from 1 mm to 50 mm (inclusive); the ratio of the longest diameter (Dmax) to the shortest diameter (Dmin) of a cross section perpendicular to the fiber direction of each chopped carbon fiber bundle, namely Dmax/Dmin is from 6.0 to 18.0 (inclusive); and the orientation parameter of the single fibers present in the surface of each chopped carbon fiber bundle is 4.0 or less.
159 Three-dimensional fiber structure of refractory fibers, a method of making it, and thermostructural composite materials, in particular friction parts, made therefrom US11077005 2005-03-10 US20050176329A1 2005-08-11 Pierre Olry; Yannick Breton; Sylvie Bonnamy; Nathalie Nicolaus; Christian Robin-Brosse; Eric Sion
Carbon nanotubes are incorporated in the fiber structure by growing them on the refractory fibers of the substrate so as to obtain a three-dimensional substrate made of refractory fibers and enriched in carbon nanotubes. The substrate is densified with a matrix to form a part of composite material such as a friction part of C/C composite material.
160 Process for preparing pitch for matrix US10007 1993-01-27 US5292473A 1994-03-08 Takashi Maeda; Toshifumi Kawamura
A process for preparing pitch for matrix wherein an optically isotropic pitch is formed into a fibrous pitch, and the fibrous pitch thus obtained is nitrated with a nitration reagent in the presence of an acid catalyst. The resulting pitch can be carbonized with a low energy, is high in carbonization yield, low in softening point and excellent in moldability and impregnability.