会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 61. 发明申请
    • Active probe for an atomic force microscope and method for use thereof
    • 原子力显微镜的有源探针及其使用方法
    • US20050066714A1
    • 2005-03-31
    • US10966619
    • 2004-10-15
    • Dennis AddertonStephen Minne
    • Dennis AddertonStephen Minne
    • G01B21/30G01Q10/06G01Q20/02G01Q60/24G01Q60/34G05D3/00G05D3/12G01B5/28
    • G01Q60/34G01Q10/045G01Q10/065Y10S977/849Y10S977/851Y10S977/863Y10S977/869Y10S977/875Y10S977/881
    • An AFM that combines an AFM Z position actuator and a self-actuated Z position cantilever (both operable in cyclical mode and contact mode), with appropriate nested feedback control circuitry to achieve high-speed imaging and accurate Z position measurements. A preferred embodiment of an AFM for analyzing a surface of a sample in either ambient air or fluid includes a self-actuated cantilever having a Z-positioning element integrated therewith and an oscillator that oscillates the self-actuated cantilever at a frequency generally equal to a resonant frequency of the self-actuated cantilever and at an oscillation amplitude generally equal to a setpoint value. The AFM includes a first feedback circuit nested within a second feedback circuit, wherein the first feedback circuit generates a cantilever control signal in response to vertical displacement of the self-actuated cantilever during a scanning operation, and the second feedback circuit is responsive to the cantilever control signal to generate a position control signal. A Z position actuator is also included within the second feedback circuit and is responsive to the position control signal to position the sample. In operation, preferably, the cantilever control signal alone is indicative of the topography of the sample surface. In a further embodiment, the first feedback circuit includes an active damping circuit for modifying the quality factor (“Q”) of the cantilever resonance to optimize the bandwidth of the cantilever response.
    • AFM将AFM Z位置执行器和自动Z位置悬臂(可循环模式和接触模式)两者兼容,并配有适当的嵌套反馈控制电路,实现高速成像和精确的Z位置测量。 用于在环境空气或流体中分析样品表面的AFM的优选实施例包括具有与其集成的Z定位元件的自动致动悬臂和振荡器,该振荡器以大致等于 自激式悬臂的谐振频率和大致等于设定值的振荡幅度。 AFM包括嵌套在第二反馈电路内的第一反馈电路,其中第一反馈电路在扫描操作期间响应于自致动悬臂的垂直位移而产生悬臂控制信号,并且第二反馈电路响应于悬臂 控制信号以产生位置控制信号。 Z位置致动器还包括在第二反馈电路内,并且响应于位置控制信号来定位样品。 在操作中,优选地,悬臂控制信号单独指示样品表面的形貌。 在另一实施例中,第一反馈电路包括用于修改悬臂谐振的质量因子(“Q”)的主动阻尼电路,以优化悬臂响应的带宽。
    • 64. 发明申请
    • Delay time modulation femtosecond time-resolved scanning probe microscope apparatus
    • 延迟时间调制飞秒时间分辨扫描探针显微镜装置
    • US20050035288A1
    • 2005-02-17
    • US10496571
    • 2002-11-25
    • Hidemi ShigekawaOsamu TakeuchiMikio YamashitaRyuji Morita
    • Hidemi ShigekawaOsamu TakeuchiMikio YamashitaRyuji Morita
    • G01J1/42G01J3/28G01J3/433G01N21/64G01Q30/00G01Q30/02G01Q60/10G01Q60/24G01N13/12G01N13/16
    • G01J3/433G01J3/2889G01J2001/4242G01N21/6408G01N21/6458G01N2021/6415G01Q30/02G01Q60/12Y10S977/85
    • Disclosed is a measuring apparatus for a physical phenomenon by photoexcitation, in particular a delay time modulated and time-resolved, scanning probe microscope apparatus providing an ultimate resolution both temporal and spatial. The apparatus comprises an ultrashort laser pulse generator (2); a delay time modulating circuit (6) which splits an ultrashort laser pulse (3) produced by the ultrashort laser pulse generator (2) into two and which also modulates a delay time td between the two ultrashort laser pulses (4 and 5) with a frequency (ω); a scanning probe microscope (17); and a lock-in detection unit (8) which performs lock-in detection with the delay time modulation frequency (ω) of a probe signal (11) from the scanning probe microscope (17). It can detect the delay time dependency of the probe signal (11) as its differential coefficient to the delay time, with no substantial influence from fluctuations in the intensity of ultrashort laser pulses (3) while preventing the probe apex (19) from thermal expansion and shrinkage by repeated irradiation with ultrashort laser pulses (3). A photoexcited physical phenomenon dependent on a delay time between ultrashort laser pulses can thus be measured at a temporal resolution in the order of femtoseconds and at a spatial resolution in the order of angstroms.
    • 公开了一种通过光激发的物理现象的测量装置,特别是延迟时间调制和时间分辨的扫描探针显微镜装置,其提供了时间和空间上的最终分辨率。 该装置包括超短激光脉冲发生器(2); 延迟时间调制电路(6),其将由超短激光脉冲发生器(2)产生的超短激光脉冲(3)分成两部分,并且还用一个第二超短激光脉冲(4和5)调制两个超短激光脉冲(4和5)之间的延迟时间td 频率(ω); 扫描探针显微镜(17); 以及锁定检测单元(8),其利用来自扫描探针显微镜(17)的探测信号(11)的延迟时间调制频率(ω)执行锁定检测。 探测信号(11)的延迟时间依赖性可以作为其延迟时间的微分系数,而不会因为超短激光脉冲(3)的强度的波动带来实质的影响,同时防止探头顶点(19)的热膨胀 以及通过用超短激光脉冲(3)重复照射来收缩。 因此,依赖于超短激光脉冲之间的延迟时间的光激发物理现象可以以飞秒级的时间分辨率和以埃的空间分辨率测量。
    • 65. 发明申请
    • Sensing mode atomic force microscope
    • 感应模式原子力显微镜
    • US20050029450A1
    • 2005-02-10
    • US10933591
    • 2004-09-03
    • Paul HoughChengpu Wang
    • Paul HoughChengpu Wang
    • G01Q10/04G01Q10/06G01Q30/04G01Q60/24G01Q60/28G01Q60/38G01N23/00G01B5/28G21K7/00
    • G01Q60/38G01Q10/06Y10S977/851Y10S977/852Y10S977/863Y10S977/869Y10S977/875
    • An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
    • 描述了一种具有悬臂的原子力显微镜,该悬臂包括在与基座相对的端部上的基部和探针尖端; 连接到基座的悬臂驱动装置; 耦合到探针尖端的磁性材料,使得当向磁性材料施加递增增加的磁场时,递增增加的力将被施加到探针尖端; 可动标本基地 以及控制器,其被构造成在基于所述探针针尖和样本之间的接触的点处获得样本的轮廓高度,并且在程序的控制下通过程序的控制来测量所述探针针尖和所述样本之间的粘附力, 施加足以破坏接触的释放力的磁场的量。 还描述了用于原子力显微镜的成像方法,其涉及测量区域内的多个点处的样本轮廓高度和粘附力,并且同时显示每个点的轮廓和附着力。 还描述了一种显微镜控制器,并被构造成针对一组点,在基于悬臂偏转,悬臂底座位置和样本压电位置的点处计算样本高度; 通过对探针尖端施加递增增加的力直到探针尖端与试样分离来计算探针尖端和样品之间的粘附力; 并将探针尖端移动到组中的新点。
    • 66. 发明授权
    • Magnetic modulation of force sensor for AC detection in an atomic force
microscope
    • 在原子力显微镜中用于AC检测的力传感器的磁调制
    • US6134955A
    • 2000-10-24
    • US228226
    • 1999-01-11
    • Wenhai HanStuart M. LindsayTianwei Jing
    • Wenhai HanStuart M. LindsayTianwei Jing
    • B81B3/00G01Q10/06G01Q30/14G01Q60/24G01Q60/32G01Q60/38G01Q70/06G01B5/28
    • G01Q10/06B82Y35/00G01Q30/14G01Q60/32G01Q60/38Y10S977/849Y10S977/86Y10S977/865Y10S977/871Y10S977/872Y10S977/873Y10S977/875
    • A scanning probe microscope for generating a signal corresponding to the surface characteristics of a scanned sample is provided and includes a force sensing probe tip disposed on a first side of a free end of a flexible cantilever which is adapted to be brought into close proximity to a sample surface; a magnetized material disposed on a second side opposite the first side of the flexible cantilever; an XY scanner for generating relative scanning movement between the force sensing probe tip and the sample surface; a Z control for adjusting the distance between the force sensing probe tip and the sample surface; and a deflection detector for generating a deflection signal indicative of deflection of the flexible cantilever. The scanning probe microscope also includes an ac signal source and a magnetic field generator for generating a magnetic field, with the magnetic field generator being coupled to the ac signal source so as to modulate the magnetic field with the ac signal. The force-sensing cantilever is magnetized with a moment along the soft axis of the cantilever.
    • 提供了用于产生对应于扫描样品的表面特性的信号的扫描探针显微镜,并且包括设置在柔性悬臂的自由端的第一侧上的力感测探针尖端,该柔性悬臂适用于靠近 样品表面; 设置在与所述柔性悬臂的第一侧相对的第二侧的磁化材料; XY扫描器,用于在力感测探针尖端和样品表面之间产生相对扫描运动; 用于调节力传感探针尖端和样品表面之间的距离的Z控制; 以及用于产生指示柔性悬臂的偏转的偏转信号的偏转检测器。 扫描探针显微镜还包括用于产生磁场的交流信号源和磁场发生器,其中磁场发生器耦合到交流信号源,以便利用交流信号调制磁场。 力传感悬臂沿着悬臂的软轴磁化一段时间。
    • 67. 发明授权
    • Method of measuring a concentration profile
    • 测量浓度分布的方法
    • US6121060A
    • 2000-09-19
    • US84206
    • 1998-05-26
    • Akiko Kameyama
    • Akiko Kameyama
    • G01N1/28G01N1/32G01Q30/08G01Q30/20G01Q60/10G01Q60/24G01Q80/00H01L21/66G01R31/26
    • H01L22/24H01L22/12
    • A method of measuring the two-dimensional dopant concentration profile in a source/drain region included in a semiconductor device is disclosed. A semiconductor substrate is etched by an etchant of the kind etching a semiconductor by an amount dependent on a dopant concentration. The etched configuration of the substrate is filled with a filler, and then the filler is separated from the substrate and has its configuration measured. Dopant concentrations and therefore a dopant profile is produced from the configuration of the filler, or a replica of the substrate, measured on the basis of data representative of a relation between the dopant configuration and the amount of etching prepared beforehand. The method insures reliable measurement even in a high dopant concentration region.
    • 公开了一种测量包括在半导体器件中的源极/漏极区域中的二维掺杂浓度分布的方法。 通过蚀刻半导体的蚀刻剂来蚀刻半导体衬底,其量取决于掺杂剂浓度。 用填料填充衬底的蚀刻构造,然后将填料与衬底分离并测量其构型。 掺杂剂浓度因此掺杂剂分布是根据表示掺杂剂配置与预先准备的蚀刻量之间的关系的数据测量的填料或基板的复制品的配置产生的。 该方法即使在高掺杂剂浓度区域也能确保可靠的测量。
    • 70. 发明授权
    • Method for measuring fracture toughness of thin films
    • 测量薄膜断裂韧性的方法
    • US6053034A
    • 2000-04-25
    • US168570
    • 1998-10-09
    • Ting Y. TsuiYoung-Chang Joo
    • Ting Y. TsuiYoung-Chang Joo
    • G01N3/00G01N3/02G01N3/42G01Q60/24G01N3/48
    • G01Q60/366B82Y35/00G01N3/42G01N2203/0064G01N2203/0067G01N2203/027G01N2203/0282G01N2203/0286Y10S977/70Y10S977/856Y10S977/90
    • A nanoindentation apparatus is used to measure the in-plane fracture toughness of a thin film formed on a substrate. One or more notches are formed in the thin film. An indenter is applied to the thin film near the notch or notches and a load is applied to the indenter to force it into the thin film. Because the substrate is softer than the thin film, the indenter does not penetrate the thin film, but "sinks in" to the soft substrate. The sink in effect enhances the tensile strain and stress at the notch. In one embodiment, both the penetration of the indenter into the thin film and substrate and the load on the indenter are measured. When the thin film fractures at the notch or notches, the indenter sharply sinks into the substrate. The thin film fracture toughness is then calculated based on the value of the load and penetration at the point of fracture using either finite element analysis or an analytical model. In a second embodiment, the cross-section of the notch or notches is measured after removing the indenter which has formed an indentation in the thin film. The indenter acts as a crack extension force. The thin film fracture toughness is then calculated based upon the geometry of a crack tip at the tip of the notch and using finite element analysis, or an analytical model, such as a Crack Tip Opening Displacement (CTOD) method.
    • 纳米压痕装置用于测量在基板上形成的薄膜的面内断裂韧性。 在薄膜中形成一个或多个凹口。 将压头施加到缺口附近的薄膜或凹口,并将负载施加到压头以将其压入薄膜中。 由于衬底比薄膜柔软,所以压头不穿透薄膜,而是“沉入”到柔性衬底。 水槽有效地增强了缺口处的拉伸应变和应力。 在一个实施例中,测量压头到薄膜和基底的穿透以及压头上的载荷。 当薄膜在切口或凹口处断裂时,压头急剧下沉到基板中。 然后使用有限元分析或分析模型,基于负荷点和断裂点的穿透值计算薄膜断裂韧度。 在第二实施例中,在去除在薄膜中形成凹陷的压头之后,测量切口或切口的横截面。 压头作为裂纹扩展力。 然后基于缺口尖端处的裂纹尖端的几何形状和使用有限元分析或诸如裂纹尖端开口位移(CTOD)方法的分析模型来计算薄膜断裂韧度。