会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Semiconductor memory device
    • 半导体存储器件
    • US06452833B2
    • 2002-09-17
    • US09773606
    • 2001-02-02
    • Hironobu AkitaKenji TsuchidaFumihiro Kohno
    • Hironobu AkitaKenji TsuchidaFumihiro Kohno
    • G11C1124
    • G11C7/12G11C11/4094
    • A BL kicker circuit includes first capacitors each of which is connected at one end to a first bit line which is one of bit lines of a corresponding pair and commonly connected at the other end, second capacitors each of which is connected at one end to a second bit line which is the other one of the bit lines of a corresponding pair and commonly connected at the other end, a first driver circuit having an output node for a first signal connected to the common connection node of the other ends of the first capacitors, a second drive circuit having an output node for a second signal connected to the common connection node of the other ends of the second capacitors, and a switch circuit used as an equalizing circuit connected between the output node for the first signal and the output node for the second signal.
    • BL激光电路包括第一电容器,每个电容器的一端连接到第一位线,第一位线是相应对的位线之一,并且在另一端共同连接,第二电容器的一端连接到一端 第二位线,其是相应对中的另一个位线并且在另一端共同连接,第一驱动器电路具有用于连接到第一电容器的另一端的公共连接节点的第一信号的输出节点 具有连接到第二电容器的另一端的公共连接节点的第二信号的输出节点的第二驱动电路和用作连接在第一信号的输出节点和输出节点之间的均衡电路的开关电路 对于第二个信号。
    • 6. 发明授权
    • Clock signal generator circuit and semiconductor integrated circuit with the same circuit
    • 时钟信号发生器电路和半导体集成电路具有相同的电路
    • US06608514B1
    • 2003-08-19
    • US09511352
    • 2000-02-23
    • Hironobu AkitaKatsuaki IsobeMasaharu WadaKenji TsuchidaHaruki Toda
    • Hironobu AkitaKatsuaki IsobeMasaharu WadaKenji TsuchidaHaruki Toda
    • H03K300
    • G11C7/222G11C7/22H03K5/00006H03K5/135
    • A clock signal generator circuit comprises an off-chip driver, a first clock control circuit for outputting a first internal clock signal Tu synchronizing with an external clock signal CK, a second clock control circuit for outputting a second internal clock signal Td 180° out-of-phase with the external clock signal CK, a third clock control circuit for outputting a third internal clock signal aTx1 synchronizing with the first clock signal Tu and advanced in phase by at least the signal delay time in the off-chip driver, a fourth clock control circuit for outputting a fourth internal clock signal aTx2 synchronizing with the second clock signal Td and advanced in phase by at least the signal delay time in the off-chip driver, an OR circuit to which the third and fourth internal clock signals aTx1, aTx2 are inputted and which outputs a fifth internal clock signal aTx, and a fifth clock control circuit for outputting a sixth internal clock signal Tx which is in synchronization with the fifth internal clock signal aTx outputted from the OR circuit, has twice the frequency of the external clock signal CK, and is advanced in phase by the signal delay time in the off-chip driver.
    • 时钟信号发生器电路包括片外驱动器,用于输出与外部时钟信号CK同步的第一内部时钟信号Tu的第一时钟控制电路,用于将第二内部时钟信号Td 180°输出的第二时钟控制电路, 与外部时钟信号CK的同相;第三时钟控制电路,用于输出与第一时钟信号Tu同步的第三内部时钟信号aTx1并至少在芯片外驱动器中的信号延迟时间相位前进;第四时钟控制电路, 时钟控制电路,用于输出与第二时钟信号Td同步的第四内部时钟信号aTx2并至少在片外驱动器中的信号延迟时间相位前进;第三和第四内部时钟信号aTx1, 输入aTx2并输出第五内部时钟信号aTx,以及第五时钟控制电路,用于输出与f同步的第六内部时钟信号Tx 从OR电路输出的第四内部时钟信号aTx具有外部时钟信号CK的两倍频率,并且在片外驱动器中相位提前信号延迟时间。
    • 9. 发明授权
    • Pump circuit boosting a supply voltage
    • 泵电路提升电源电压
    • US06326834B1
    • 2001-12-04
    • US09602896
    • 2000-06-23
    • Hironobu AkitaMasaharu WadaKenji TsuchidaHironori Banba
    • Hironobu AkitaMasaharu WadaKenji TsuchidaHironori Banba
    • G05F110
    • H02M3/073
    • First transistors for charging respective one side nodes of a plurality of capacitors are connected to these nodes of the capacitors, respectively. Second transistors for outputting electric charge of each capacitor are connected between respective one side nodes of the capacitors and an output terminal, respectively. A plurality of third transistors for transferring the electric charge of the other side nodes of the capacitors to the other nodes are connected to the respective other nodes. The electric charge of each capacitor is serially transferred from nodes of a high electric potential to nodes of a lower electric potential through one path by sequentially controlling the third transistors, or the electric charge of each capacitor is parallel transferred between arbitrary nodes of a high electric potential and low nodes through a plurality of paths. By these operations, electric charge of each capacitor is recycled.
    • 用于对多个电容器的各个侧面节点进行充电的第一晶体管分别连接到电容器的这些节点。 用于输出每个电容器的电荷的第二晶体管分别连接在电容器的相应的一个侧面节点和输出端子之间。 用于将电容器的另一侧节点的电荷转移到其他节点的多个第三晶体管连接到相应的其他节点。 每个电容器的电荷通过顺序地控制第三晶体管,通过一个路径从高电位的节点被串行地传递到较低电位的节点,或者每个电容器的电荷在高电位的任意节点之间并行传送 潜在和低节点通过多个路径。 通过这些操作,每个电容器的电荷被再循环。
    • 10. 发明授权
    • Semiconductor memory device
    • 半导体存储器件
    • US6154402A
    • 2000-11-28
    • US398201
    • 1999-09-17
    • Hironobu Akita
    • Hironobu Akita
    • G11C11/409G11C7/06G11C7/12G11C7/00
    • G11C7/06G11C7/12
    • In a semiconductor memory device, charge transfer gates and a bit line precharging/equalizing circuit are inserted in the order mentioned in a bit line pair between memory cells and a sense amplifier. When the transfer gates are off, data of the memory cells are read out to the bit line pair located on the memory cell side. Subsequently, when the transfer gates are turned on, the data are transferred to the bit line pair located on the sense amplifier side. Thereafter, the transfer gates are turned off on the basis of a threshold value of the transfer gates. Then, the memory cell data transferred to the sense amplifier side are amplified by a conventional DRAM method. The bit line precharging/equalizing circuit does not require a large area. It is therefore possible to miniaturize the semiconductor memory device.
    • 在半导体存储器件中,按照存储器单元和读出放大器之间的位线对中所述的顺序插入电荷传输门和位线预充电/均衡电路。 当传输门关闭时,存储器单元的数据被读出到位于存储单元侧的位线对。 随后,当传输门被接通时,数据被传送到位于读出放大器侧的位线对。 此后,基于传送门的阈值关闭传送门。 然后,通过传统的DRAM方法放大传送到读出放大器侧的存储单元数据。 位线预充电/均衡电路不需要大面积。 因此,可以使半导体存储器件小型化。